
516 Int. J. Automation and Control, Vol. 18, No. 5, 2024

Real-time order picking of a robotic put wall:
a simulation-based metaheuristic optimisation

Jianbin Xin
School of Electrical and Information Engineering,
Zhengzhou University,
No. 100 Science Road, Zhengzhou 450001, China
and
State Key Laboratory of Intelligent Agricultural Power Equipment,
No. 39, Xiyuan Road,
Luoyang 471039, China
Email: j.xin@zzu.edu.cn

Ziyuan Kang
School of Electrical and Information Engineering,
Zhengzhou University,
No. 100 Science Road, Zhengzhou 450001, China
Email: 704058543@qq.com

Andrea D’Ariano
Department of Civil, Computer Science and
Aeronautical Technologies Engineering,
Roma Tre University,
00146 Roma, Italy
Email: andrea.dariano@uniroma3.it

Lina Yao*
School of Electrical and Inforamtion Engineering,
Zhengzhou University,
No. 100 Science Road, Zhengzhou 450001, China
Email: yaoln@zzu.edu.cn
*Corresponding author

Abstract: A robotic put wall has the potential to significantly enhance
picking productivity in the logistics industry. This paper introduces a new
computational method for scheduling a robotic put wall system that processes
randomly arriving items. The method comprises a simulation-based model and
a customised metaheuristic that optimises performance at regular intervals.
The simulation model is developed using advanced discrete-event software
that can include operational details of the picking process. The genetic
algorithm with a new encoding scheme is tailored to solve the combinatorial
optimisation problem of determining the appropriate destinations. To evaluate
the proposed method, case studies based on real-world applications in a

Copyright © 2024 Inderscience Enterprises Ltd.

Real-time order picking of a robotic put wall 517

put wall manufacturing company were used. The method outperforms three
rule-based real-time scheduling methods, as demonstrated by the results.
Moreover, the integrated approach can determine the minimum number of
vehicles required.

Keywords: order picking system; robotic put wall; real-time scheduling;
simulation-based optimisation.

Reference to this paper should be made as follows: Xin, J., Kang, Z.,
D’Ariano, A. and Yao, L. (2024) ‘Real-time order picking of a robotic put
wall: a simulation-based metaheuristic optimisation’, Int. J. Automation and
Control, Vol. 18, No. 5, pp.516–536.

Biographical notes: Jianbin Xin received his BSc in Electrical Engineering
from the Xidian University, China in 2007, MSc in Control Science and
Engineering from the Xi’an Jiaotong University, China in 2010, and PhD
from the Department of Maritime and Transport Technology, Delft University
of Technology, The Netherlands in 2015. Currently, he is an Associate
Professor at the Department of Automation, Zhengzhou University, China.
His research interests include planning and control of smart logistics systems
and cooperative robots.

Ziyuan Kang received his Bachelor’s degree and Master of Engineering from
the School of Electrical Engineering at Zhengzhou University in 2019 and
2023, respectively. His research interests include simulation and optimisation
for smart logistics.

Andrea D’Ariano received his BS and MS in Computer Science, Automation,
and Management Engineering from the Roma Tre University and PhD from
the Department of Transport and Planning, Delft University of Technology,
in April 2008, under the supervision of Professor I.A. Hansen. Currently, he
is a Professor at the Department of Engineering, Roma Tre University. His
research interests include the study of scheduling problems with application
to public transportation and logistics. He is an associate editor of well-known
international journals, such as Transportation Research – B: Methodological,
Transportation Research – C: Emerging Technologies, and Transportation
Research – E: Logistics and Transportation Review.

Lina Yao received his PhD in Control Theory and Control Engineering from
the Institute of Automation, Chinese Academy of Sciences, Beijing, China
in 2006. Then, she joined Zhengzhou University, Zhengzhou, China, where
she is currently a Professor. From September 2007 to March 2008, she was
a research fellow at the University of Science and Technology of Lille in
France. Her research interests are in fault diagnosis and fault-tolerant control
for dynamic systems, stochastic distribution control, and flight control.

1 Introduction

With the rapid growth of e-commerce, there has been a significant increase in the
number of parcels being delivered from warehouses to customers. As a result, the order

518 J. Xin et al.

picking system (OPS) has become an essential component of the logistics process. Order
picking involves selecting products from the warehouse and packing them into parcels
based on customer orders (Boysen et al., 2021; Tan et al., 2021). The parcels are then
sorted by destination and prepared for shipment. Order picking is widely regarded as
the most labour-intensive operation in the warehouse, and improving productivity in this
area is a top priority for warehousing professionals (de Koster et al., 2007).

Modern order picking systems are faced with the challenge of handling a high
volume of small orders with tight delivery deadlines (Boysen et al., 2019b). Meeting
these demands while maintaining high-performance levels can be difficult for OPSs
(Azadeh et al., 2019). One solution for increasing productivity and reducing labour costs
is to automate the order picking process. Various automated order picking systems, such
as automated guided vehicles (AGVs), rail guided vehicles (RGV), and other types of
robots, have been investigated (Sun et al., 2021; Luo et al., 2023; Lamballais et al.,
2017; Xin et al., 2014). In this paper, we focus on improving the performance of a
robotic put wall, an automated OPS that processes a high volume of orders in a limited
space using a fleet of RGVs (see Figure 1). The robotic put wall enables fast, automated
pick-up and sortation of discrete order consolidation items.

The operations of a robotic put wall are complex and challenging. Processing a
large number of orders quickly is a primary requirement. When multiple goods and
orders are provided, different goods must be packed into the same container for each
order, and the destination sequence must be optimised. Additionally, the RGV must
operate in a collision-free environment. Furthermore, goods arrive randomly at the
robotic put wall, and detailed information is not available until they are scanned. Given
these complexities, we propose a novel integrated computational method to increase the
productivity of the robotic put wall.

Figure 1 Schematic layout of a put wall (see online version for colours)

Source: Courtesy of Invata (Invata Automated Robotic Put Wall Solutions, 2023)

Real-time order picking of a robotic put wall 519

1.1 Related work

This section reviews the literature on the planning problem for the robotic put wall.
OPS planning can be categorised into three areas: strategic, tactical, and operational
decision problems (van Gils et al., 2018). Strategic problems focus on long-term
competitive strategies, such as layout design and material handling equipment selection
(van Gils et al., 2018). Tactical problems address medium-term decisions, such as
resource dimension, zoning, and storage assignment (Yu and De Koster, 2009; Lee
et al., 2020). Operational decision problems focus on daily operations, such as batching,
routing, and job assignment, to maximise productivity (Wagner and Mönch, 2022; Bódis
and Botzheim, 2018).

Given our research focus on real-time scheduling of the robotic put wall, we will
review the literature on operational decision problems for OPS and the put wall.

1.1.1 OPS’s operational decisions

This section provides an overview of the literature on real-time scheduling for the
robotic put wall. Real-time scheduling is concerned with operational decisions such as
order batching and routing.

Order batching policies determine which customer orders should be combined into
a single pick round (van Gils et al., 2018). The order batching problem is investigated
using return, midpoint, and traversal routing strategies (Öncan, 2015). The author
presents mixed integer linear programming (MILP) formulations for these strategies,
along with an iterative local search algorithm. Gil-Borrás et al. (2021) focus on the
online order batching processing problem with multiple pickers and propose a multi-start
procedure hybridised with a variable neighbourhood descent metaheuristic to solve
it. Overall, these studies contribute valuable insights into order batching policies and
provide different strategies and algorithms to tackle the order batching problem.

Routing policies dictate the sequence of storage locations to be visited in each
pick round to fulfil a pick list (van Gils et al., 2018). Chabot et al. (2017) investigate
the order-picking routing problem with weight, fragility, and category constraints.
They propose two mathematical models and employ five heuristic methods, including
extensions of a classical large gap, midpoint, S-shape, and combined heuristics.
Matusiak et al. (2014) tackle the order picking and picker-routing combination problem
in the warehouse using the simulated annealing algorithm. They estimate cost savings
by batch processing more than two customer orders to eliminate unnecessary routing.
Masae et al. (2021) propose an efficient optimal order picker routing policy for the leaf
warehouse using an Eulerian graph and dynamic programming procedure. They also
develop four simple routing heuristics.

Order pickers are often required to retrieve orders within tight time windows.
The job assignment planning problem determines the optimal order in which orders
or batches of orders should be retrieved, as well as how orders should be assigned
to a limited number of pickers (van Gils et al., 2018). Henn (2015) emphasises the
significance of retrieving customer orders within their specified time windows and
propose a local search-based method to minimise the total delay of a given set of orders.
In a related study, Henn and Schmid (2013) demonstrate how metaheuristics can be
utilised to minimise the total tardiness of a given set of customer orders.

520 J. Xin et al.

Based on the available literature, it appears that researchers have primarily focused
on the process of orders from storage to the picking station, rather than the operational
decision during order picking. Therefore, it is worthwhile to investigate the operational
decision in the picking station’s working process.

1.1.2 Put wall system

A put wall is a piece of hardware made out of containers that are mostly used for order
picking. Put walls can manage a high volume of orders while maintaining a modest
footprint. This order-picking mechanism not only saves time on item selection but also
makes the best use of the warehouse’s limited area. As a result, many online retailers in
the medical and fresh food industries use placed barriers to pick orders (Boysen et al.,
2019a).

Put walls receive little attention in comparison to the more commonly used OPS,
such as RMFS and AS/RS. Ardjmand et al. (2019) study the integrated order batching
and picker routing problem, in which two genetic algorithms (GA) with customised
operators and list-based simulated annealing are proposed. The manual put wall’s
batched order bin sequencing problem is investigated, to quickly pick orders into the
put wall and avoid packers’ unproductive idle time (Boysen et al., 2019b). In Ardjmand
et al. (2020), a mixed integer programming model for sequential batching and routing
in a put wall-based picking system is proposed. To minimise the total travel time and
the maximum time, they study the order batching and picker routing problem of a
put wall-based OPS and propose a coevolutionary genetic algorithm and an archived
multi-objective simulated annealing.

In summary, it is observed that all the existing research focuses on the manual put
wall. The research on the robotic put wall has not been investigated. Consequently, it is
unclear how the robotic put wall is scheduled.

1.1.3 Contributions and structure

The main contribution of this paper is to achieve the dynamic order picking of
the robotic put wall system, which has not been investigated, to the best of our
knowledge. We propose a novel simulation-based method to dynamically optimise
the performance of the robotic put wall system. Our proposed scheduling approach
incorporates simulation and genetic algorithm, which enables the system to dynamically
select the destinations of randomly arriving goods. Importantly, dynamic scheduling
occurs in real time, ensuring the system is always operating at peak performance.

The rest of this paper is structured as follows: Section 2 introduces the problem
statement as well as the main steps for constructing the discrete event simulation.
Section 3 proposes a simulation-based dynamic scheduling method that combines the
genetic algorithm and simulation. In Section 4, we conduct case study experiments to
discuss its operational performance and determine the optimal number of RGVs. Section
5 summarises the paper and suggests future research directions.

Real-time order picking of a robotic put wall 521

2 Simulation-based modelling

This section outlines the problem statement and introduces the simulation-based method
to simulate the robotic put wall system. The first part defines the research problem of
the put wall and the second part provides its modelling framework using simulation.

2.1 Problem statement

Consider the robotic put wall system depicted in Figure 1, which consists of a series
of dedicated shelving. Put walls can handle a high volume of orders in a small amount
of space. A fleet of RGVs is used in the robotic put wall system to load a batch of
goods from the conveyor and then unload them into different boxes linked to different
customers for packing. Several good containers are available in front of a worker.
When goods arrive at the robotic put wall, they are manually scanned and their type
information is determined. Based on the order requirements, the goods are transported
by the RGVs and placed in the appropriate container. When the order is completed,
the container will be manually removed from the automated put wall and packed. After
that, the empty container will return to the automated put wall and participate in the
next round of order picking.

In our research problem, we focus on scheduling batch picking operations by the put
wall system, i.e., how to schedule the RGV for transporting put goods with unknown
order information and how to allocate these goods to form the required orders.

Before modelling the put wall system, important assumptions are made below.

• each RGV can only load one good at a time

• the order of the goods is unknown, and the good information is not available until
the goods are manually scanned

• each RGV starts the next task after completing the current task

• all RGVs start from the bottom track

• the goods destination, i.e., the goods box, is located on the vertical track of the
put wall

• each RGV stops when performing the loading and unloading operations

• the put wall system stops until all the orders are completed.

2.2 Discrete event simulation-based modelling

Discrete-event simulation (DES) is regarded as an efficient computer tool to model,
optimise and analyse real-world discrete event systems, which are widely used for
production scheduling, traffic management, and resource utilisation problems (van
Vianen et al., 2016; Fabri et al., 2022).

In DES, the system’s state changes only during a specific time period defined as an
event. DES can be expressed as a set of events on the timestamp, where different events
represent the system’s states at different times. The simulation based on discrete events
must accurately represent the system and reflect its overall operation logic. As a result,
we divide the modelling process into the following steps based on discrete events:

522 J. Xin et al.

1 Data collection: Analyse the actual system and collect data related to the model’s
establishment, such as the system’s size and the parameters of the system’s
corresponding modules, such as length, height, speed, and so on.

2 Tool selection: Choose appropriate software tools to simulate the actual system,
simulate and restore the system’s operation logic and constraints, and realise data
input and data collection functions.

3 Create the model: Before data collection and simulation optimisation, it is
essential to confirm through specific data sets that the model’s performance
closely matches the real system. Restart at Step 2 if the model’s performance
significantly differs from that of the actual system. Figure 2 illustrates the logic
diagram of the DES model developed in this work.

4 Simulation and results analysis: Based on the validity of the simulation results,
determine whether there is room for improvement in the model and propose an
improvement path.

Figure 2 Operation logic diagram of the RGV-based robotic put wall

Start RGV
 Scan the goods and

enter the system
 RGVs drive to

picking area
 Any goods
waitingϋ

 Receiving goods
and drive

 yes

 Wait

 no

 Above the
destinationϋ

 Descending and
unloading

 yes

 Continue drive

 Retry

 no Retry

Reach the bottom
intersection

 Other RGV ϋ

 Random
priority traffic

 Crossing and
next round

 no

 yes

Unloading time:
3s

Figure 2 provides the logic diagram of the developed DES model, in which all RGVs
are processed in parallel. First, all the empty RGVs are parked on the bottom track of
the system before starting to load the goods. When a certain good is available, the good
is manually scanned and then transported from the scanning point to the unloading point
via the belt conveyor. In this circumstance, after loading the good, the RGV moves to
the top horizontal track and checks the destination shelf when passing the intersection.
The RGV moves downside when the destination shelf is detected. After unloading the
good, the RGV reaches the intersection of the vertical track and the bottom horizontal
track, and join the RGV queue for loading new goods. When two RGVs approach the
same intersection in the bottom horizontal track, the conflict is resolved by a prioritised
rule. After passing the intersection, the RGV arrives at the loading location again and
starts the next cycle.

Real-time order picking of a robotic put wall 523

Table 1 Indexes and sets

Notation Description

n Total number of RGVs
k Total number of RGVs in Spool

V Set of RGVs, V = [1, 2, ..., Vn]
L Location of RGVs, L = [L1, L2, ..., Ln]
D Module of unloading shelf, include A, B, C, ...
d Destination module of RGV, with d ∈ D

F Floor of unloading place
f Destination floor of RGV, with f ∈ F

G Set of goods categories, including a, b, c, d, and e

g Type of goods loaded by the RGV, with g ∈ G

Spool Pool composed of RGVs participating in online scheduling

Figure 3 Implementing the robotic put wall by using Tecnomatix Plant (see online version
for colours)

 Define DES modelĆs objective Define ways to interact with the model

 throughput

 Package (item)

 Create DES simulation model(Including 3D objects and logical relationships)

In this paper, we use the state-of-the-art simulation software Tecnomatix Plant
Simulation (Bangsow, 2020), which enables us to simulate, analyse and schedule the
order-picking process of the robotic put wall. Specifically, Plant allows us to create
another virtual system potentially used for digital twins and optimise the picking process
by using the customised toolbox. Table 1 defines the used defined indexes and sets.
Figure 3 gives the robotic put wall implemented by Tecnomatix Plant.

524 J. Xin et al.

3 Simulation-based dynamic scheduling

In this section, for the robotic put wall, using the advantages of fast and high
accuracy in solving problems based on metaheuristic algorithms (Laha et al., 2010), we
propose a dynamic scheduling method, which is based on the simulation model and a
metaheuristic. The scheduling framework is introduced first, followed by a discussion
of a customised scheduling algorithm.

3.1 Framework

Figure 4 gives the real-time scheduling framework for the considered put wall. In this
framework, a virtual representation is created to interact with the simulated physical
system, forming a derived system to optimise the order-picking process in real-time.

The physical system uses sensors to identify all RGVs in the simulation and
transmits the information (RGV location and destination, RGV index, and good type) to
the derived virtual system. The derived system then formulates the optimisation problem
and uses the tailored GA module to discover the optimal solution. Following a return to
the physical system of the best choice, the unloaded RGVs look for the corresponding
unloading point as their destination. According to the most recent information, every
RGV is still in operation. The processing processes of the physical system can be
quickly optimised thanks to the developed derived model and the tailored GA module.

Figure 4 Framework of simulation-based dynamic scheduling (see online version for colours)

The robotic put wall

Set of destination
solutions

Fitness
Evaluation

Simulation

The derived system

Genetic algorithm
System
status

Destination
decisions

Iterations

3.2 Customised scheduling

This part introduces the developed dynamic scheduling algorithm by using the created
derived model and the customised GA inside the simulation software Tecnomatix Plant.
On the one hand, GA has been proven to be a simple but powerful metaheuristic to
solve practical combinatorial optimisation problems (Xin et al., 2022, 2023). The GA
has a relatively simple algorithmic structure, but this metaheuristic has a good ability
to diversify the search in the feasible region of the search space. On the other hand,
Tecnomatix Plant provides an easy-to-use module to encode the feasible solutions of the
formulated order-picking problem.

Genetic algorithms are random search techniques based on natural selection (Cui,
2020). GA in general uses a set of feasible solutions, which is defined as a population,
and iteratively finds new high-quality solutions through the following customised

Real-time order picking of a robotic put wall 525

operation: selection, crossover, and mutation. The selection operation is to pick up
high-quality solutions from the current population, to allow convergence toward optimal
solutions. The crossover and mutation operations generate new solutions to enlarge the
diversity of the population to accelerate the convergence of the algorithm, i.e., improving
local optimal solutions.

In the next parts, we discuss the customised GA’s essential elements, including
encoding, three operations, and fitness functions. We will also present the detailed
scheduling algorithm procedures.

3.2.1 Encoding

In GAs, a population (a set of possible solutions) needs to be initialised and further
optimised. The encoding scheme for each solution is highly relevant to the solution
quality. For the considered order-picking process, we consider the permutation encoding
scheme, in which each chromosome contains the destinations of the good.

Since both the type and destination of every picked good can be different, we
propose a two-dimensional (2D) encoding scheme rather than the one-dimensional (1D)
encoding scheme used for common scheduling problems. The good type information and
the destination are included in these two dimensions, respectively. Each chromosome,
which is defined as X , contains Xg and Xd in two dimensions representing the good
type and the destination information.

Figure 5 Illustration of the proposed 2D encoding scheme

a b e c a b c d

1 2 4 3 2 1 4 3

Dimension1

Dimension2

Then, Figure 5 illustrates the detailed encoding method based on the defined symbols
earlier. In this example, eight goods are listed in order. Dimensions 1 and 2 correspond
to the content of Xg (good category) and Xd (good destination). The categories of these
eight goods are {a, b, e, c, a, b, c, d}, and their destinations are listed as {1, 2, 4, 3, 2,
1, 4, 3}.

In the proposed re-scheduling algorithm, the solution only changes in the destination
when involving the same type of cargo. The following part discusses how these solution
changes using the GA’s operations to improve the solution quality.

3.2.2 Pseudocode

The pseudocode of the proposed dynamic scheduling algorithm is shown in Algorithm 1.
Initially, the positions of all the RGVs are reported as inputs, and the RGVs start to
load the goods waiting in the conveyor. At each instant t, for each RGV carrying a
particular good, detect if the RGV is moving downward in the column. These goods
that are unsatisfying this condition are included in a non-empty decision pool Spool used
for solving an optimisation problem using the simulation. If the decision pool Spool
is non-empty, a derived system is created to simulate the original put wall. In such a
derived system, GA is customised to optimise the destinations of the picked goods by

526 J. Xin et al.

using selection, crossover, and mutation operations. These operations are discussed in
the following parts.

Algorithm 1 Simulation-based real-time scheduling algorithm

Initialise the locations of all the RGVs: L1, L2, ..., Ln

for t = 0, 1, 2, ..., tmax do
Detect the status of each RGV and compose the decision pool Spool
while Spool is not empty do

Derive the system of the put wall
Initialise P (iter)
while iter ≤ itermax do

for i = 1 : Np do
Evaluate the fitness F (X) of each solution in population P (iter)

end for
Selection over P (iter) and form Pnew(iter)

end while
for i = 1 : Np do

Randomly choose two solutions from Pnew(iter) as c1i (iter) and c2i (iter)
Crossover over c1i (iter) and c2i (iter) as ci(iter) with a probability α
Mutation over c1i (iter) or c2i (iter) as ci(iter) with a probability β
Report c1i (iter) as ci(iter) with a probability (1− α− β)

end for
P (iter + 1) = c1(iter) ∪ c2(iter)... ∪ cN (iter)

end while
Wait for the next moment t

end for

3.2.3 GA operations

Three operations (selection, crossover, and mutation) of GA are detailed in this part.
These operations are essential elements of GA to generate new and potentially better
individuals during several iterations.

The selection operation is based on a roulette wheel selection strategy, as suggested
by Kramer (2017). In this strategy, the fitness f(xi) of each xi in the population P
is needed. The probabilities of each individual being inherited by the next generation
population (defined as pi) and the cumulative probability of chromosome (defined as
qi), are used to select the next generation. pi and qi) are calculated as follows:

pi =
f(xi)∑M
j=1 f(xj)

(1)

qi =
i∑

j=1

p(xj) (2)

When pi and qi are calculated, generate a uniformly distributed random number r
(r ∈ [0, 1]) for each individual xi one by one. If r < qi, select the individual xi,
otherwise choose the individual xk which satisfies the condition qk−1 < r ≤ qk.

For the crossover operation, the order crossover strategy is employed to generate
new individuals in the next generation. This commonly-used strategy is simple and

Real-time order picking of a robotic put wall 527

efficient for permutation-encoded chromosomes, as suggested by Kramer (2017). Under
this strategy, the crossover operation is performed based on two chromosomes randomly
chosen from the updated population after the above selection operations. The chosen two
random chromosomes are regarded as parents 1 and 2. Two random crossover points are
created, and the destination numbers between these two points are copied from parent 1
to a new chromosome in the same positions. Then, remove these copied numbers from
parent 2 and insert the remaining arc numbers in parent 2 into the new chromosome in
order from the second crossover point. When the second half of the new chromosome
is filled, fill it from the first half. The crossover process is illustrated in Figure 6.

Figure 6 Illustrative order crossover operation (see online version for colours)

1 2 3 4 5 6 7 8

5 8 4 3 2 7 1 6

Parent 2

Parent 1

6 8 4 3 2 7 1 5Child

Regarding the mutation operation, the swap strategy is employed because it provides a
new order but makes small changes to the existing order of the put wall. In this strategy,
two positions in the chromosome are selected randomly, and their destination numbers
are swapped.

3.2.4 Fitness function

In the offline scheduling problem, the objective is to minimise the total time for
the put wall to complete picking the last good (makespan). In our online scheduling
sub-problem, the objective of the local optimisation problem is transformed into the
sum of the time when each RGV reaches the loading place. The reason is that if the
makespan is set to be objective, there may exist a delay for new goods when being to
be loaded.

In the customised GA, we let the fitness function written as follows:

F (X) =
n∑

i=1

T (Vi) (3)

where T (Vi) is the time (in the derived system) when RGV Vi reaches the loading place
after completing the unloading task. Note that T (Vi) are obtained by simulating all the
transport tasks in the derived system. For a large-scale put wall, the computation burden
can be large when considering a large population P for GA. In the following section,
we will discuss the proper parameters of the GA applicable for real-time scheduling.

528 J. Xin et al.

4 Experimental results

This section conducts extensive simulation experiments and discusses the results of the
proposed real-time scheduling method against two commonly-used methods. We first
present the setting of simulation experiments and then discuss the experimental results.

4.1 Experiment setup

This part introduces the experimental settings of the robotic put wall simulation
system. Subsection 4.1.1 introduces the scenarios generation and overall setting and
Subsection 4.1.2 discusses the parameter selection of the proposed scheduling algorithm
suitable for the put wall.

4.1.1 Scenarios generation and overall setting

Here we compare the proposed dynamic scheduling method to three rule-based methods
in practice to validate the feasibility of the methods proposed in this study.

We consider a real put wall of 12 columns, and two order boxes are located for
each column. The discrete matrix between different columns is given in Table 2. We
consider four scenarios with different numbers of items and arrival rates. Scenarios 1
and 2 have a total of 120 goods and 240 goods, and each item arrives every second.
Scenarios 1 and 2 include a total of 120 goods and 240 goods, and each item arrives
within a random time interval between one second and two seconds. The good type and
destination of all the goods are randomly generated in an unknown order. These data
are derived from real-world applications at a put wall manufacturer company.

Table 2 Distance matrix between different columns (unit: metre)

Column 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 4 6 8 10 12 14 16 18 20 22
2 2 0 2 4 6 8 10 12 14 16 18 20
3 4 2 0 2 4 6 8 10 12 14 16 18
4 6 4 2 0 2 4 6 8 10 12 14 16
5 8 6 4 2 0 2 4 6 8 10 12 14
6 10 8 6 4 2 0 2 4 6 8 10 12
7 12 10 8 6 4 2 0 2 4 6 8 10
8 14 12 10 8 6 4 2 0 2 4 6 8
9 16 14 12 10 8 6 4 2 0 2 4 6
10 18 16 14 12 10 8 6 4 2 0 2 4
11 20 18 16 14 12 10 8 6 4 2 0 2
12 22 20 18 16 14 12 10 8 6 4 2 0

The proposed method is compared with three rule-based dynamic scheduling methods,
i.e., random, minimal distance (MD), and congestion-aware. These three compared
method are summarised as follows:

• the random method randomly select the destinations of each good when perform
the dynamic scheduling

Real-time order picking of a robotic put wall 529

• the MD method selects the nearest destination of the good, when multiple orders
of the same type of good are received

• congestion-aware methods avoid selecting the nearest destination column, which
may cause congestion when multiple RGVs are involved.

The makespan and computation time (CT) are both recorded to compare the
performances. Tecnomatix Plant 16.0 is used to simulate the robotic put wall. The
hardware for all these experiments is an Intel i7-9700 processor (3.0 GHz) with 8 GB
of memory.

4.1.2 Algorithm parameter setting

In the designed GA, four key parameters (the population size Np, the maximal number
of iterations itermax, the probabilities of crossover and mutation Pc and Pm) need to
be selected. First, we conducted a group of numerical experiments via the proposed
dynamic scheduling method to better set Np and itermax, under a commonly used setting
(Pc = 0.8, Pm = 0.1) (Kramer, 2017). The average fitness value and computation time
are presented in Table 3 (120 goods, Nk = 5).

Table 3 Averaged fitness value and computation time for setting the GA’s parameters

Np itermax Fitness CT (unit: ms)

50 10 124.095 69.7
50 20 119.52 72.1
50 50 119.52 301.7
50 100 119.52 757.6
20 10 127.655 52.3
20 20 121.015 72.1
20 50 119.52 201.5
20 100 119.52 395.7

Table 3 shows the average fitness and computation time for two different parameter
settings. The Np and itermax values chosen are 50 and 20, respectively. This setting is
recommended because it produces the smallest fitness values in the shortest amount of
time.

Then, under the setting (Np = 50 and itermax = 20), Pc and Pm are varied to see
their influences on the fitness value over the iterations, as shown in Figure 7. The
compared results in Figure 7 show that the setting (Pc = 0.8, Pm = 0.1) indeed gives
the lowest fitness value with a fast convergence.

4.2 Result discussion

Tables 4–7 compare the computational performances of our proposed simulation-based
scheduling method against three practical rule-based real-time scheduling methods
(random, congestion-aware, and MD) for the four scenarios. The number of RGVs Nk

varied for each scenario to verify the robustness of the proposed method.

530 J. Xin et al.

Table 4 Compared computational results with respect to scenario 1

Settings Random Congestion aware MD Our proposed

Nk
makespan CT makespan CT makespan CT makespan CT

(s) (ms) (s) (ms) (s) (ms) (s) (ms)

7 691.82 0.4 692.16 0.8 696.54 2.6 668.81 289.1
8 616.12 0.5 615.12 1.2 619.31 3.5 594.77 337.0
9 558.98 0.6 555.94 1.8 558.26 4.4 537.39 369.1
10 509.47 0.8 507.91 2.7 507.81 5.1 490.26 418.5
11 479.55 1.0 475.79 3.8 478.23 6.0 458.53 477.3
12 449.23 1.3 444.25 4.9 444.77 7.0 431.72 561.2
13 421.12 1.5 416.03 6.2 415.09 7.8 404.20 642.3
14 405.07 1.9 399.81 7.3 398.59 8.8 387.18 757.6
15 389.58 2.3 383.36 8.7 383.11 9.7 373.34 812.3
16 390.85 2.6 384.25 9.9 383.15 10.5 377.55 887.4
17 396.97 3.1 389.13 11.4 391.27 12.1 383.27 957.9
18 408.05 3.6 400.24 12.8 403.09 13.6 396.91 1,029.8

Average 476.40 1.6 472.00 6.0 473.10 7.6 458.66 628.3

Table 5 Compared computational results with respect to scenario 2

Settings Random Congestion aware MD Our proposed

Nk
makespan CT makespan CT makespan CT makespan CT

(s) (ms) (s) (ms) (s) (ms) (s) (ms)

7 693.08 0.3 694.74 0.8 697.66 2.5 667.73 293.7
8 617.72 0.4 617.01 1.2 618.23 3.5 595.60 341.0
9 560.35 0.6 557.55 1.7 559.92 4.4 538.04 373.5
10 511.63 0.8 509.79 2.7 509.56 5.0 488.21 407.6
11 480.10 0.9 473.24 3.7 477.33 5.9 459.80 493.5
12 451.69 1.3 447.29 4.8 447.77 7.0 432.33 547.1
13 423.16 1.5 419.77 6.2 418.88 7.7 406.13 650.8
14 407.29 2.0 405.23 7.1 403.85 8.8 391.27 758.3
15 391.59 2.3 384.80 8.7 384.24 9.7 372.63 840.7
16 393.03 2.7 386.04 10.2 385.13 10.6 379.33 898.5
17 400.53 3.3 393.36 11.7 395.93 11.9 380.23 981.2
18 411.16 3.7 403.26 13.0 407.20 13.6 398.27 1,051.0

Average 478.44 1.7 474.34 6.0 475.48 7.6 459.13 636.4

In general, the proposed method consistently outperforms the other three methods in
terms of the makespan of all four scenarios. Take Table 4 for scenario 1 as an example,
the average makespan by using our proposed method is 458.66 seconds, which is better
than the random method (476.4 seconds), the congestion-aware method (472 seconds),
and the MD method (473.1 seconds). This demonstrates that our simulation-based
scheduling method is capable of providing high-quality solutions to the robotic put
wall, owing to the metaheuristic integrated with the derived system’s ability to simulate
various solutions in a short period. Table 4 shows that the congestion-aware method

Real-time order picking of a robotic put wall 531

outperforms the MD method slightly. The choice of the shortest distance may not result
in higher productivity than the congestion-aware method, because the shortest distance
may cause congestion, lowering overall system productivity. Similar observations can
also be found in Table 5–7.

Table 6 Compared computational results with respect to scenario 3

Settings Random Congestion aware MD Our proposed

Nk
makespan CT makespan CT makespan CT makespan CT

(s) (ms) (s) (ms) (s) (ms) (s) (ms)

7 1,380.22 0.4 1,378.34 0.8 1,384.54 2.4 1,324.82 287.5
8 1,229.56 0.5 1,221.78 1.1 1,229.32 3.3 1,185.70 329.4
9 1,116.24 0.6 1,100.24 1.7 1,110.32 4.5 1,074.05 370.3
10 1,013.73 0.8 1,011.80 2.6 1,011.25 5.1 975.82 430.1
11 949.24 0.9 934.46 4.0 944.29 6.0 910.24 462.3
12 881.60 1.3 873.78 5.0 874.06 7.0 843.78 531.5
13 833.14 1.5 825.57 6.4 823.90 7.6 798.74 637.8
14 797.63 2.0 792.93 7.1 789.82 8.8 765.70 761.0
15 775.33 2.4 769.03 9.0 765.55 10.0 738.17 823.6
16 769.27 2.7 765.08 10.4 766.30 10.9 737.46 889.0
17 780.19 3.2 776.12 12.0 773.85 13.0 743.88 964.4
18 802.06 3.7 789.24 12.8 790.07 13.7 770.18 1,031.4

Average 944.02 1.7 936.53 6.1 938.61 7.7 905.71 626.5

Table 7 Compared computational results with respect to scenario 4

Settings Random Congestion aware MD Our proposed

Nk
makespan CT makespan CT makespan CT makespan CT

(s) (ms) (s) (ms) (s) (ms) (s) (ms)

7 1,383.67 0.4 1,384.30 0.8 1,388.33 2.6 1,330.77 274.1
8 1,230.12 0.5 1,229.53 1.1 1,231.01 3.6 1,187.31 339.0
9 1,119.66 0.6 1,111.37 1.7 1,117.85 4.4 1,074.87 381.2
10 1,019.25 0.8 1,014.09 2.7 1,014.13 5.1 977.44 421.3
11 953.28 1.0 937.66 3.8 946.97 6.0 911.57 478.7
12 883.03 1.3 875.77 4.8 876.00 7.0 845.37 548.0
13 832.66 1.6 825.18 6.2 823.63 7.7 800.13 632.5
14 800.03 1.9 793.72 7.4 790.25 9.0 766.03 751.0
15 775.31 2.4 769.90 8.7 767.63 10.0 738.31 821.9
16 770.33 2.6 767.24 10.1 770.77 10.5 737.92 875.4
17 781.24 3.1 776.38 11.6 777.07 12.2 745.34 990.1
18 803.97 3.6 790.99 12.9 793.07 14.0 775.33 1,019.3

Average 946.05 1.7 939.68 6.0 941.39 7.7 907.53 627.7

The compared computation times of these methods for all four scenarios are also
recorded in Tables 4–7. It should be noted that our proposed method takes significantly
longer to compute than the other three methods. This is because for the decision process,

532 J. Xin et al.

multiple simulations are conducted, and each decision is evaluated after the entire
simulation is completed. Nonetheless, the computation time is less than one second,
satisfying the requirement of a real-time decision every second. The three rule-based
methods (random, congestion-aware, and MD) all have short computation times, with
the longest being less than 15 ms. These rules do produce quick results.

Figure 7 Fitness curves by different crossover and mutation probabilities (see online version
for colours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iter

120.0

122.5

125.0

127.5

130.0

132.5

135.0

Fi
tn

es
s v

al
ue

Pc=0.6 Pm=0.1
Pc=0.8 Pm=0.1
Pc=0.9 Pm=0.1
Pc=0.6 Pm=0.05
Pc=0.8 Pm=0.05
Pc=0.9 Pm=0.05

Figure 8 Influence of different Nk values on the makespan of four methods for scenario 1
(see online version for colours)

7 8 9 10 11 12 13 14 15 16 17 18
Nk

400

450

500

550

600

650

700

Co
m

pl
et

e
tim

e(
s)

Random
Congestion-aware
MD
Our proposed

From Tables 4–7, the optimal number of RGVs Nk can be determined for each scenario,
by examining the performance of the makespan as Nk changes (from 7 to 18). For
instance, when Nk = 15, our scheduling method achieves the shortest makespan for

Real-time order picking of a robotic put wall 533

scenarios 1–2. When Nk increases from 7 to 16, the makespan decreases, while it
increases when Nk increases from 16 to 18. The tendency to decline at the beginning
and rise up late can also be seen in the makespan of the other three methods for each
scenario.

Figure 8 illustrates the effects of different Nk values on the makespan for scenario 1.
This figure clearly shows the tendency to decline and rise up when Nk becomes larger,
as well as the proposed method’s advantage over the other three methods. For scenario 1,
the optimal Nk is suggested to be 15, which determines the shortest time for all four
methods.

Table 8 Compared results when varying the rescheduling interval for scenario 1

Interval 100 ms 500 ms 1 s 5 s

Nk
makespan CT makespan CT makespan CT makespan CT

(s) (ms) (s) (ms) (s) (ms) (s) (ms)

12 428.48 551.3 430.24 564.4 431.72 569.9 435.26 556.9
13 401.06 641.1 402.62 646.4 404.20 646.4 407.68 643.2
14 383.66 744.9 385.71 754.2 387.18 764.1 391.09 753.8
15 369.91 814.9 371.78 827.9 373.34 816.2 377.00 812.7
16 374.62 880.4 375.40 883.9 377.55 880.2 380.31 876.4
17 380.27 964.7 381.61 963.3 383.27 953.8 386.75 960.7

Average 389.67 766.2 391.23 773.4 392.88 771.8 396.35 767.3

Table 5 compares the makespan and computation time when the rescheduling interval
is changed to further investigate its effects on these two indicators for scenario 1. The
interval is changed from 100 ms to 5 seconds for comparison. Table 5 shows that
when Nk is changed from 12 to 17, the makespan decreases and then increases, which
is consistent with the trend in Table 4. When Nk reaches 15, productivity reaches a
limit, and when Nk exceeds 15, productivity begins to decline because more congestion
is created. The computation time increases as Nk increases because more decision
variables are included in the optimisation problem.

Table 5 shows that the makespan can be reduced as the rescheduling interval
becomes shorter. In practice, however, this reduction is not possible because the
computation time is significantly longer than the interval. 1 second is a good choice for
achieving a balance between makespan and computation time. Because the optimisation
problem is the same size regardless of the rescheduling interval value, the computation
time does not vary significantly.

5 Conclusions and future research

In this paper, we present a novel dynamic scheduling method for a robotic put wall
system to handle randomly arriving items. By combining simulation and metaheuristics
at predefined intervals, the proposed scheduling method iteratively accesses the
performance of dealing with arrival items in the put wall. This integration takes
advantage of the simulation to model the complex process of the put wall system and
the genetic algorithm to effectively optimise the system performance. The simulation is

534 J. Xin et al.

implemented by the state-of-the-art software Tecnomatix Plant, and the operation details
of the process can be included in the simulation to better represent the real system.
The genetic algorithm is customised to solve the combinatorial optimisation problem of
determining a suitable destination. Using the proposed integrated approach, the minimal
value of the vehicle number can also be obtained.

The benefits of the proposed methodology are demonstrated through case studies
derived from real-world applications at a put wall manufacturer company. The proposed
method is compared to three rule-based real-time scheduling methods, and its makespan
outperforms these rule-based methods. A sufficiently good solution can be obtained in
a reasonable amount of time by using a genetic algorithm designed for combinatorial
optimisation problems. Because multiple simulations are performed to find the best
fitness value of the genetic algorithm, our proposed method takes longer to compute
than the three rule-based methods.

Regarding future research, the following aspects can be considered: first, the impact
of vehicle speed, goods arrival interval, vehicle acceleration, and other parameters on
system performance can be considered. Second, the structure of the picking system can
be optimised, such as the overall operation logic of the picking system, the number
of feeding ports, and so on. Third, combining plant simulation software with other
optimisation algorithms is an option.

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China
under Grant 62173311 and 61703372, in part by the College Youth Backbone Teacher
Project of Henan Province under Grant 2021GGJS001, in part by Henan Scientific and
Technological Research Project under Grant 222102220123, and in part by the Training
Project of Zhengzhou University under Grant JC21640030.

References

Ardjmand, E., Bajgiran, O.S. and Youssef, E. (2019) ‘Using list-based simulated annealing and genetic
algorithm for order batching and picker routing in put wall based picking systems’, Applied Soft
Computing, Vol. 75, pp.106–119.

Ardjmand, E., Youssef, E.M., Moyer, A., Ii, W.A.Y., Weckman, G.R. and Shakeri, H. (2020)
‘A multi-objective model for minimising makespan and total travel time in put wall-based
picking systems’, International Journal of Logistics Systems and Management, Vol. 36, No. 1,
pp.138–176.

Azadeh, K., De Koster, R. and Roy, D. (2019) ‘Robotized and automated warehouse systems: review
and recent developments’, Transportation Science, Vol. 53, No. 4, pp.917–945.

Bangsow. S. (2020) Tecnomatix Plant Simulation: Modeling and Programming by Means of Examples,
Springer, Cham, Switzerland.

Bódis, T. and Botzheim, J. (2018) ‘Bacterial memetic algorithms for order picking routing problem
with loading constraints’, Expert Systems with Applications, Vol. 105, pp.196–220.

Boysen, N., de Koster, R. and Füßler, D. (2021) ‘The forgotten sons: warehousing systems for
brick-and-mortar retail chains’, European Journal of Operational Research, Vol. 288, No. 2,
pp.361–381.

Real-time order picking of a robotic put wall 535

Boysen, N., de Koster, R. and Weidinger, F. (2019) ‘Warehousing in the e-commerce era: a survey’,
European Journal of Operational Research, Vol. 277, No. 2, pp.396–411.

Boysen, N., Stephan, K. and Weidinger, F. (2019) ‘Manual order consolidation with put walls: the
batched order bin sequencing problem’, EURO Journal on Transportation and Logistics, Vol. 8,
No. 2, pp.169–193.

Chabot, T., Lahyani, R. and Coelho, L.C. and Renaud, J. (2017) ‘Order picking problems under
weight, fragility and category constraints’, International Journal of Production Research, Vol. 55,
No. 21, pp.6361–6379.

Cui X.Q. (2020) ‘Multi-objective flexible flow shop batch scheduling problem with renewable energy’,
International Journal of Automation and Control, Vol. 25, Nos. 5–6, pp.519–553.

De Koster, R., Le-Duc, T. and Roodbergen, K.J. (2007) ‘Design and control of warehouse order
picking: a literature review’, European Journal of Operational Research, Vol. 182, No. 2,
pp.481–501.

Fabri, M., Ramalhinho, H., Oliver, M. and Muñoz, J.C. (2022) ‘Internal logistics flow simulation:
a case study in automotive industry’, Journal of Simulation, Vol. 16, No. 2, pp.204–216.

Gil-Borŕas, S., Pardo, E.G., Alonso-Ayuso, A. and Duarte, A. (2021) ‘A heuristic approach for the
online order batching problem with multiple pickers’, Computers & Industrial Engineering,
Vol. 160, p.107517.

Henn, S. (2015) ‘Order batching and sequencing for the minimization of the total tardiness in
picker-to-part warehouses’, Flexible Services and Manufacturing Journal, Vol. 27, No. 1,
pp.86–114.

Henn, S. and Schmid, V. (2013) ‘Metaheuristics for order batching and sequencing in manual order
picking systems’, Computers & Industrial Engineering, Vol. 66, No. 2, pp.338–351.

Invata Automated Robotic Put Wall Solutions (2023) [online] https://www.invata.com/automated-put-
wall-solutions/ (accessed 1 June 2023).

Kramer, O. (2017) Genetic Algorithm Essentials, Springer, Berlin, Germany.
Laha, D. and Chakraborty, U.K. (2010) ‘Minimising total flow time in permutation flow shop

scheduling using a simulated annealing-based approach’, International Journal of Automation
and Control, Vol. 4, No. 4, pp.359–379.

Lamballais, T., Roy, D. and De Koster, M. (2017) ‘Estimating performance in a robotic mobile
fulfillment system’, European Journal of Operational Research, Vol. 256, No. 3, pp.976–990.

Lee, H-Y. and Murray, C.C. (2019) ‘Robotics in order picking: evaluating warehouse layouts for
pick, place, and transport vehicle routing systems’, International Journal of Production Research,
Vol. 57, No. 18, pp.5821–5841.

Lee, I.G., Chung, S.H. and Yoon, S.W. (2020) ‘Two-stage storage assignment to minimize travel time
and congestion for warehouse order picking operations’, Computers & Industrial Engineering,
Vol. 139, p.106129.

Luo, L., Zhao, N., Zhu, Y. and Sun, Y. (2023) ‘A∗ guiding DQN algorithm for automated guided
vehicle pathfinding problem of robotic mobile fulfillment systems’, Computers & Industrial
Engineering, Vol. 178, p.109112.

Masae, M., Glock, C.H. and Vichitkunakorn, P. (2021) ‘A method for efficiently routing order pickers
in the leaf warehouse’, International Journal of Production Economics, Vol. 234, p.108069.

Matusiak, M. and De Koster, R., Kroon, L. and Saarinen, J. (2014) ‘A fast simulated annealing
method for batching precedence-constrained customer orders in a warehouse’, European Journal
of Operational Research, Vol. 236, No. 3, pp.968–977.

Öncan, T. (2015) ‘Milp formulations and an iterated local search algorithm with tabu thresholding
for the order batching problem’, European Journal of Operational Research, Vol. 243, No. 1,
pp.142–155.

536 J. Xin et al.

Sun, Y., Zhao, N. and Lodewijks, G. (2021) ‘An autonomous vehicle interference-free scheduling
approach on bidirectional paths in a robotic mobile fulfillment system’, Expert Systems with
Applications, Vol. 178, p.114932.

Tan, Z., Li, H. and He, X. (2021) ‘Optimizing parcel sorting process of vertical sorting system in
e-commerce warehouse’, Advanced Engineering Informatics, Vol. 48, p.101279.

Van Gils, T., Ramaekers, K., Caris, A. and De Koster, R.B. (2018) ‘Designing efficient order picking
systems by combining planning problems: state-of-the-art classification and review’, European
Journal of Operational Research, Vol. 267, No. 1, pp.1–15.

Van Vianen, T., Ottjes, J. and Lodewijks, G. (2016) ‘Belt conveyor network design using simulation’,
Journal of Simulation, Vol. 10, No. 3, pp.157–165.

Wagner, S. and Mönch, L. (2022) ‘A variable neighborhood search approach to solve the order
batching problem with heterogeneous pick devices’, European Journal of Operational Research,
Vol. 304, No. 2, pp.461–475.

Xin, J., Meng C., D’Ariano, A., Schulte, F., Peng J. and Negenborn R. (2023) ‘Energy-efficient
routing of a multirobot station: a flexible time-space network approach’, IEEE Transactions on
Automation Science and Engineering, Vol. 20, No. 3, pp.2022–2036.

Xin, J., Negenborn R. and Lodewijks G. (2014) ‘Rescheduling of interacting machines in automated
container terminals’, IFAC Proceedings Volumes, Vol. 47, No. 3, pp.1698–1704.

Xin, J., Yu, B., D’Ariano, A., Wang, H. and Wang, M. (2022) ‘Time-dependent rural postman
problem: time-space network formulation and genetic algorithm’, Operational Research, Vol. 22,
No. 3, pp.2943–2972.

Yu, M. and De Koster, R.B. (2009) ‘The impact of order batching and picking area zoning on
order picking system performance’, European Journal of Operational Research, Vol. 198, No. 2,
pp.480–490.

