
GENO2318342 VOL 00, ISS 00

Distributed predictive motion planning of automated guided vehicles: serial
versus parallel schemes

Xuwen Wu, Jianbin Xin, and Andrea D’Ariano

QUERY SHEET
This page lists questions we have about your paper. The numbers displayed at left are
hyperlinked to the location of the query in your paper.

The title and author names are listed on this sheet as they will be published, both on your paper
and on the Table of Contents. Please review and ensure the information is correct and advise us if
any changes need to be made. In addition, please review your paper as a whole for typographical
and essential corrections.

Your PDF proof has been enabled so that you can comment on the proof directly using Adobe
Acrobat. For further information on marking corrections using Acrobat, please visit https://
authorservices.taylorandfrancis.com/how-to-correct-proofs-with-adobe/

The CrossRef database (www.crossref.org/) has been used to validate the references. Changes
resulting from mismatches are tracked in red font.

AUTHOR QUERIES

QUERY NO. QUERY DETAILS
Q1 Taylor & Francis will complete the Received/Accepted information.
Q2 Does Industry 4.0 need a reference?
Q3 Does MLD need a reference?
Q4 Please define LiDAR and SLAM. Do they need references?
Q5 Should ”flop shop scheduling” be ”flow shop scheduling”?
Q6 Does the ”improved A* algorithm” need a reference or an explanation?
Q7 The antecedent of ”their” is unclear. Please check that the sentence reads

correctly or provide an alternative version.
Q8 Should ”reply” be ”relies”?
Q9 Should ”rlim and rlim” be ”rlim and slim”?
Q10 Is there a spurious opening parenthesis, or a missing closing parenthesis, in

this line?

https://authorservices.taylorandfrancis.com/how-to-correct-proofs-with-adobe/
https://authorservices.taylorandfrancis.com/how-to-correct-proofs-with-adobe/
www.crossref.org/


QUERY NO. QUERY DETAILS
Q11 Authors should restrict their use of colour to situations where it is neces-

sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.

Q12 Authors should restrict their use of colour to situations where it is neces-
sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.

Q13 Authors should restrict their use of colour to situations where it is neces-
sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.

Q14 Authors should restrict their use of colour to situations where it is neces-
sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.

Q15 Authors should restrict their use of colour to situations where it is neces-
sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.



QUERY NO. QUERY DETAILS
Q16 Authors should restrict their use of colour to situations where it is neces-

sary on scientific, and not merely cosmetic, grounds. Colour figures will
be reproduced in colour in your online article free of charge. If it is nec-
essary for the figures to be reproduced in colour in the print version, a
charge will apply. Charges for colour figures in print are 300 per figure
(400U SDollars;500 Australian Dollars; 350). For more than 4 colour fig-
ures, the fifth and above will be charged at 50 per figure (75U SDollars;100
Australian Dollars; 65). Depending on your location, these charges may be
subject to local taxes.

Q17 Is there a spurious opening parenthesis, or a missing closing parenthesis, in
this line?

Q18 Please check ”3.0 Hz”.
Q19 Please explain why some values are in boldface type.
Q20 Please explain why some values are in boldface type.
Q21 Should ”Figure 9” be ”Figure 8”?
Q22 The funding information provided (the ”College Youth Backbone Teacher

Project of Henan Province” and the ”Henan Scientific and Technological
Research Project”) have been checked against the Open Funder Registry
at https://doi.crossref.org/funderNames?mode=list and no matches were
found. Please check and resupply the funding details.



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

ENGINEERING OPTIMIZATION
https://doi.org/10.1080/0305215X.2024.2318342

Distributed predictive motion planning of automated guided
vehicles: serial versus parallel schemes

Xuwen Wua, Jianbin Xina,b and Andrea D’Arianoc

aSchool of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China;
bState Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang, People’s Republic of China;
cDipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Universit Degli Studi Roma Tre,
Rome, Italy

ABSTRACT
The article presents two distributed motion planning methods for dynam-
ically coordinating multiple automated guide vehicles (AGVs) in an indus-
trial setting, aiming to enhance their flexibility, robustness and scalability.
A predictive motion model is utilized to describe the transport process
mathematically as a dynamical system. Subsequently, alternating direc-
tionmethod ofmultipliers (ADMM)-based decomposition techniques, both
serial and parallel, are developed to coordinate the AGVs and mitigate
the computational burden. The efficacy of the distributed methods is ver-
ified through testing in industrial scenarios, demonstrating that they can
significantly improve multi-AGV system transport productivity with min-
imal computational effort. Notably, the parallel scheme exhibits superior
performance in coordinating the AGVs compared to the serial scheme.
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1. Introduction

Automated guided vehicles (AGVs), are intelligent mobile robots that are widely used in indus-
tries such as manufacturing systems, warehouses, container terminals and more. They are primarily
employed for material transportation and task execution (Kim and Hwang 2001; Lee, Cao, and
Shi 2009; Xin et al. 2022; Zheng et al. 2022). With the advent of Industry 4.0 and the increas- Q2
ing demand for non-general and diversified products, AGVs need to become more intelligent,
autonomous and efficient. This is crucial in order to enhance the resilience and agility of man-
ufacturing systems under complex and dynamic operational conditions (Ryck, Versteyhe, and
Debrouwere 2020).

There are two challenges in planning the operations of an AGV fleet to meet the manufac-
turer’s requirements. First, each AGV should be intelligent enough to respond appropriately to
changes in the operational environment—e.g.machine breakdown, change of delivery points (Nishi
et al. 2020)—thereby reducing the economic loss caused by these uncertainties (Fragapane et al. 2021).
Secondly, each AGV should communicate with the other AGVs to avoid collisions as efficiently as
possible (Ryck, Versteyhe, and Debrouwere 2020). The current trend in AGV operation is towards
decentralization, and each AGV should decide its actions. To deal with the limitations of the com-
putational burden and the communication band, low-cost but real-time distributed computing is
recommended (Negenborn and Maestre 2014).
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In this article, the focus is directed towards enhancing the flexibility, robustness and scalability
of AGV motion planning in manufacturing and logistics environments, addressing the challenges
previously mentioned. The AGV transport process is approached from the standpoint of discrete-
event dynamical systems and distributed control. The transport process is mathematically modelled
as a dynamic system using the mixed logical dynamical (MLD) representation. Additionally, bothQ3
serial and parallel distributed optimization techniques are developed based on the alternating direc-
tion method of multipliers (ADMM) to coordinate multiple AGVs dynamically, providing real-time
decision-making value.

1.1. Relatedwork

One of themost fundamental issues thatmobile robotsmust solve to perform autonomous navigation
and exploration in challenging situations is motion planning. A mobile robot looking for an optimal
or suboptimal path from an initial state to a goal state under specific performance criteria, given
a robot and its working environment, is a typical definition of the motion planning problem. The
relevant research is examined from a multi-robot perspective.

AnAGVmoves on a predefined roadmap, which is represented logically by a graphwith nodes and
arcs. This section focuses specifically on this type of robot. Motion planning is based on the results
of task assignment, which optimally distributes a given set of tasks to a fleet of AGVs (Xin et al. 2023;
Zou et al. 2020). The task sequences processed by each AGV are frequently involved when assigning
these tasks, and the goal is typically to minimize the makespan (i.e. the completion time of all given
tasks) or the tardiness of all defined tasks.

Following task assignment, motion planning determines the optimal path to execute these tasks
in the guided roadmap from its origin and destination, and collision avoidance must be considered
when planning the detailed path (Kumar and Sikander 2023). Since the introduction of new sensing
technologies (e.g. LiDAR SLAM or visual SLAM ), motion planning of multiple AGVs (or mobileQ4
robots) has received increased attention. Motion planning for multiple AGVs is more complex than
for a single robot because each robot must consider the behaviour of other robots, and neighbouring
robots may become dynamic obstacles.

Multiple AGV motion planning can be divided into offline and online approaches. Offline
approaches typically determine the collision-free path of each AGV in advance, and the decision
is not updated when each robot performs the task. The majority of offline approaches are addressed
centrally. The time–space network approach, for example, is regarded as an effective modelling rep-
resentation for detecting and resolving conflicts in a grid roadmap layout (Murakami 2020; Nishi,
Ando, and Konishi 2005). Based on labelled Petri nets, one alternative method is to design an opti-
mal controller to preventAGVcollisions (Luo et al. 2020). In addition to these centralized approaches,
Fanti et al. (2018) propose a decentralized zone-based planning algorithm based on prioritized rules
to resolve AGV conflicts.

Offline motion planning of multiple AGVs is also combined with other issues, such as task
allocation and scheduling. In Nishi and Tanaka (2012), the researchers look into simultaneous dis-
patching and conflict-free routing for bidirectional automated guided vehicle systems. Miyamoto
and Inoue (2016) combine task allocation and motion planning as a single problem using the
time–space network framework. Furthermore, according to the applications required in the produc-
tion workshop (Saidi-Mehrabad et al. 2015; Yi et al. 2019) or container terminals (Zhong et al. 2020),
conflict-free AGV routing approaches are integrated with job shop scheduling and flop shop
scheduling.Q5

Online approaches, which are more capable of dealing with unexpected situations, have received
little attention in comparison to the offline approaches that have been intensively investigated for the
movement of AGVs. The computational load for dynamic coordination between thesemultiple AGVs
can be significant. As a result, one effective way to address this issue is to simplify coordination by
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employing global congestion-awaremetrics to disperse traffic flow and ensure adequate vehicle trans-
port capacity (Fransen et al. 2020; Yang, Lian, and Xie 2020). The improved A* algorithm is then used Q6
to search for and avoid collisions on the idle path. Furthermore, a dynamic motion planning method
for a multi-AGV system has recently been proposed in Guney and Raptis (2021), and prioritized
update logic is implemented in a centralized controller to resolve motion conflicts.

However, it can be observed that the current online approaches are addressed in a centralized way
for the motion planning of multiple AGVs. These centralized approaches simplify the coordination
among these AGVs (e.g. by using prioritized rules). The position of each AGV cannot be predicted
without a dynamic model when replanning these AGVs. Owing to the lack of this information, the
AGV performance cannot be improved further.

1.2. Contributions and outline of this article

To address the aforementioned limitations, the contributions of this article are given as follows.

• This article presents novel serial and parallel distributed motion planning methods based on
ADMM-based decomposition. This coordination is performed dynamically to improve their Q7
transport efficiency. Currently, dynamicmotion planning has primarily been investigated in a cen-
tralized manner and coordination among AGVs primarily reply on prioritized rules—e.g. Guney Q8
and Raptis (2021)—imposing potential improvements.

• The performance of serial and parallel schemes using ADMMare compared and analysed, includ-
ing the convergence speed and calculating time. These distributed optimization methods fit the
decentralized trend of AGV operations in the future (Ryck, Versteyhe, and Debrouwere 2020).
This comparison has not been shown in the current literature.

In this article, a centralized dynamical model for motion planning of multiple AGVs is presented,
and this model is prepared for distributed decomposition. Two ADMM-based distributed planning
algorithms (serial and parallel) are proposed to decompose the computation. The convergence speed
and calculation time of these two distributed patterns are further analysed. Specifically, the multiple
motion choices for the same objective value of both the centralized and the distributed planning
methods are discussed.

The remainder of the article is organized as follows: Section 2 describes the research problem
and provides a dedicated centralized model predictive control (MPC) controller to determine the
collision-free paths dynamically. In Section 3, an ADMM-based distributed planning method (serial
iterative ADMM and parallel iterative ADMM) is proposed to coordinate the multi-AGV system.
Section 4 discusses the results of the proposed methodology on the numerical tests and further
analyses its performance. Section 5 concludes this article and provides future research directions.

2. Problem description andmodelling

This section introduces the investigated motion planning problem of multiple AGVs, as well as its
mathematical formulation as a dynamical predictive model.

2.1. Problem statement

Multiple materials must be transported by multiple AGVs in a connected guided path network in
an industrial environment. It is necessary to plan a collision-free vehicle path for each AGV from
its starting node to its delivery node when transporting materials. Each AGV is assumed to have its
starting and delivery nodes assigned in advance.

In Figure 1, a squared AGV roadmap is considered, featuring multiple nodes with equal distances
between adjacent nodes. Each node of the roadmap represents a vehicle lane, and AGVs can only wait
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Figure 1. ExampleQ11 of a 4 × 4 squared roadmap of the guide path network.

or change directions at that node. Each AGV can only reach its adjacent nodes, which are connected
to its location node by a single move, and it cannot reach non-adjacent connected nodes by a single
move.

In thismotion planning problem, the following assumptions aremade, as suggested inNishi, Ando,
and Konishi (2005) and Nishi et al. (2020).

• The geometrical size of an AGV is sufficiently small, and the AGV is regarded as a point occupying
a particular node.

• EachAGV is assigned a task from its pickupnode to its delivery node, and these nodes are different.
• The velocity of the AGV is constant, and the turning time can be included in the corresponding

travelling time.
• Each AGV can wait or change direction at the node of the path network, and each node can be

occupied by at most one AGV at any time.
• The lanes are bidirectional, and a lane can be occupied by at most one AGV at any time.
• When an AGV completes a particular task, this AGV stays at the end node.
• Every pickup–delivery node pair is connected, and the number of AGVs is less than the number

of nodes.

2.2. Dynamical model

In this part, a mixed logical dynamical (MLD) formulation is used to model the transport process of
multiple AGVs in the guide path network. The MLD model is a powerful modelling approach, and
this MLDmodel can describe the motion changes of the AGVs in a computationally friendly manner
that is well suited for the formulation of the system and control design (e.g. optimal control andmodel
predictive control) (Camacho et al. 2010). TheMLDmodel has been successfully used in the domain
of power systems (Tobajas et al. 2022), transportation systems (Cataldo and Scattolini 2016; Sirmatel
and Geroliminis 2018) and other applications.

The whole planning horizon is equally discretized into a set of time slots denoted by {�t, 2 ×
�t, . . . ,H ×�t}, where�t is the time step and H is the total number of time steps. The roadmap is
regarded as a directed graph G = (N,E). N is the set of nodes, while E = {(i, j)|i ∈ N, j ∈ N} is the
set of directed arcs (i, j). Since the roadmap can be visited by every AGV, the graph G is shared by all
the AGVs.

Before providing the MLD formulation for modelling the movement process, the related state
variable xki (t) and control variable uki,j(t) are introduced. The related symbols are given in Table 1.
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Table 1. Index variables and input parameters.

Symbol Description

�t Discretized time step
Tp Planning time horizon
t Discretized time instance, t ∈ {0, 1, . . . , Tp}
Ni Set of nodes adjacent to node i
N Set of nodes
E Set of arcs
Nn Total number of nodes in the graph
NAGV Total number of AGVs
� Set of AGVs,� = {1, 2, . . . ,NAGV}
Sk Start node of AGV k
Gk End node of AGV k
NL Set of local ending nodes within Tp
Dj,Gk Approximated distance between node j and the end node Gk

• xki (t) is defined as the state variable. xki (t) = 1 means that AGV k arrives at node i at time t;
otherwise, xki (t) = 0;

• uki,j(t) is defined as the control variable; u
k
i,j(t) = 1 indicates that AGV kmoves from node i at time

t to node j at time t+ 1. Note that nodes i and j can be identical if AGV k stays in the same node
from t to t+ 1; item δkj (t) is defined as the auxiliary control variable to linearize the nonlinear term
xkj (t)

∑
i∈Nj,i �=j u

k
i,j(t);

• Ck
j is defined as the control variable to select the local ending node; Ck

j = 1 if AGV k arrives the
local ending node j at time Tp; otherwise Ck

j = 0.

2.2.1. MPC representation
Model predictive control (MPC) is a control strategy that explicitly uses a dynamical model to deter-
mine control actions by minimizing the desired objective over a finite receding horizon. This control
strategy has been successfully implemented in transportation and robotics by Rinaldi et al. (2020)
and Zheng, Negenborn, and Lodewijks (2016).

Regarding the objective function, a local version defined as J̃ is given as follows:

J̃ =
∑
k∈�

⎛⎝∑
j∈NL

Ck
j ∗ Dj,Gk + Tp

⎞⎠ , (1)

where the parameterDj,Gk is obtained by approximating the distance between node j and destination
node Gk for AGV k.

The local objective’s constraints are represented as follows:∑
j
Ck
j = 1, k ∈ �, j ∈ NL (2)

xkj (Tp) = Ck
j , k ∈ �, j ∈ NL, (3)

where constraint (2) ensures that each AGV chooses a local ending node in the considered local
problem. Constraint (3) ensures that eachAGV can only stay at one of the local ending nodes (j ∈ NL)
by t = Tp.

Furthermore, the following linear constraints are utilized to represent the motion dynamics:

xkj (t + 1) = xkj (t)− δkj (t)+
∑

i∈Nj,i �=j

uki,j(t), (4)
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δkj (t)− xkj (t) ≤ 0, (5)

δkj (t)−
∑

i∈Nj,i �=j

uki,j(t) ≤ 0, (6)

xkj (t)+
∑

i∈Nj,i �=j

uki,j(t)− δkj (t) ≤ 1. (7)

Constraints (4)–(7) provide the predictive motion dynamics of the AGVs as linear constraints, indi-
cating that xkj (t + 1) = 1 if

∑
i∈Nj,i �=j u

k
i,j(t) = 1, otherwise xkj (t + 1) = xkj (t). The notation δ

k
j (t) is

an auxiliary binary variable used to linearize the nonlinear term xkj (t)
∑

i∈Nj,i �=j u
k
i,j(t). It is defined as

δkj (t) � xkj (t)
∑

i∈Nj,i �=j u
k
i,j(t) and can be expressed by three linear inequalities (Constraints (5)–(7))

to facilitate the modelling.
Additionally, there are other time–space constraints concerning collision avoidance and initial

positions, as follows:∑
i∈N

xki (t) ≤ 1, ∀k ∈ �, t = 0, . . . ,Tp (8)

∑
k∈�

xki (t) ≤ 1, ∀i ∈ N, t = 0, . . . ,Tp (9)

∑
k∈�,j∈Ni

(uki,j(t)+ ukj,i(t)) ≤ 1, ∀ t = 0, . . . ,Tp (10)

∑
j∈Ni

xkj (t + 1) ≥ xki (t), ∀i ∈ N, t = 0, . . . ,Tp − 1, k ∈ �, (11)

xkSk(0) = 1, k ∈ �. (12)

Constraint (8) ensures that each AGV stays at only one node at any time. Constraint (9) guarantees
that every node can be occupied by at most one AGV. Constraint (10) requires that the connec-
tion between nodes i and j is unidirectional and that every connection can only be occupied by one
AGV at most at any time. Constraint (11) ensures that AGV k moves node i to its adjacent nodes.
Constraint (12) provides the initial position of all the considered AGVs.

In this context, û = [uT(0), . . . ,uT(Tp − 1), δT(0), . . . , δT(Tp − 1),CT]T is defined, whereC rep-
resents the set of Ck

j . Consequently, the local planning problem (defined as P1) can be formulated as
follows:

(P1) min
û

J̃

s.t. (2)−−3, (4)−−(12).
The planning problem P1 is an integer linear programming (ILP) problem, which is solved in a
centralized way. Centralized planning has the drawbacks of heavy computation burden, inflexible
structure and technical limitations, and distributed planning is required to distribute the intelli-
gence of the overall AGV system (Negenborn andMaestre 2014). In the next section, two distributed
decompositions are proposed to achieve this goal.

3. ADMM-based distributed planning

In this section, ADMM-based distributed planners are presented, and serial and parallel decompo-
sition schemes are proposed to coordinate the AGVs. Because of the requirements of the Industry
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4.0 plan (including flexibility, robustness and scalability issues, due to memory limitations, commu-
nication and computation), decentralized planning is required to distribute the intelligence of the
overall AGV system (Ryck, Versteyhe, and Debrouwere 2020). Distributed computing decomposes
the centralized problem into smaller problems, and each AGV makes its own decisions based on
the interactions with the other AGVs. This can reduce the overall computational burden and greatly
improve computational efficiency.

The proposed two distributed planning algorithms, as well as the separable optimization formu-
lation for the distributed planner, are presented in the following sections.

3.1. ADMMdecomposition

ADMM is a widely used decomposition method for solving distributed MPC problems (Chen
et al. 2020; Zheng, Negenborn, and Lodewijks 2016). ADMM is recommended since this is intended
to blend the decomposability of dual ascent with the superior convergence properties of the method
of multipliers (Boyd et al. 2011). When using the ADMMmethod, the augmented Lagrangian of the
original optimization problem is first constructed, while the primal and dual variables are updated
in an alternating or sequential fashion. The algorithm continues until a given stopping criterion is
satisfied.

Next, the augmented Lagrangian function regarding the problem P1 is explained. The capacity
constraints (8) and (9) are coupled for the multiple AGVs. Two non-negative Lagrangian multipliers
λ1 and λ2 are introduced to relax these two coupled constraints. The augmented Lagrangian function
of problem P1 is formulated as follows:

Lc =
∑
k∈�

⎛⎝∑
j∈NL

Ck
j ∗ Dj,G + Tp

⎞⎠
+ λ1

(∑
k∈�

xki (t)− 1

)
+ λ2

(∑
k∈�

(uki,j(t)+ ukj,i(t))− 1

)

+ ε

2

(∑
k∈�

xki (t)− 1

)2

+ ε

2

(∑
k∈�

(uki,j(t)+ ukj,i(t))− 1

)2

∀k ∈ �, i ∈ N, j ∈ NL, t = 0, . . . ,Tp, (13)

where ε is the augmented Lagrangian parameter. For the sake of computation, the related notations
are defined as follows:

φk � xki (t)− 1/NAGV, ∀k ∈ � (14)

ψk � uki,j(t)+ ukj,i(t)− 1/NAGV, ∀k ∈ �. (15)

The problem of minimizing Lc is not separable into AGV-level sub-problems owing to the incor-
porated quadratic penalty term. To maintain separability, a linearization technique is used for
the cross-penalty part around the estimated optimal solution (Cohen and Zhu 1984). The aug-
mented Lagrangian function Lc can be additive for AGV k by using the first-order Taylor expansion.
| ∑NAGV

k=1 φk|2 can be expressed as follows:

∣∣∣∣∣
NAGV∑
k=1

φk

∣∣∣∣∣
2

=
NAGV∑
k=1

|φk|2 + 2
NAGV∑
k=1

NAGV−1∑
l=1

φkφl. (16)
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The last (cross-product) terms of (16) are linearized by a first-order Taylor expansion around the
point (φk,φl) for a good estimation. In this way, | ∑k φk|2 is expanded into the following expressions:∣∣∣∣∣

NAGV∑
k=1

φk

∣∣∣∣∣
2

≈
NAGV∑
k=1

∣∣∣∣∣∣φk +
NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

−
NAGV∑
k=1

∣∣∣∣∣∣
NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

− 2
NAGV∑
k=1

φk

NAGV−1∑
l=1

φl

=
NAGV∑
k=1

⎛⎝
∣∣∣∣∣∣φk +

NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

− 2φk
NAGV−1∑
l=1

φl

⎞⎠ , (17)

where φk = ∑
k(x

k
i (t)− 1/NAGV), and φk is regarded as a constant. For each k, the original | ∑k φk|2

is separable.∑
k ψk can be linearized in a similar way. Therefore, the original centralized problem P2 can be

decomposed into a series of sub-problems (one for each AGV). The objective function for AGV k can
be written as follows:

Lkc =
⎛⎝∑

j∈NL

Ck
j ∗ Dj,G + Tp)+ λ1φk + λ2ψk

⎞⎠
+ ε

2

⎛⎝
∣∣∣∣∣∣φk +

NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
NAGV−1∑
l=1,l �=k

φl

∣∣∣∣∣∣
2

− 2φk
NAGV−1∑
l=1

φl

⎞⎠
+ ε

2

⎛⎝
∣∣∣∣∣∣ψk +

NAGV−1∑
l=1,l �=k

ψl

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
NAGV−1∑
l=1,l �=k

ψl

∣∣∣∣∣∣
2

− 2ψk

NAGV−1∑
l=1

ψl

⎞⎠ . (18)

The dual function is defined as the minimum value obtained by the objective function Lkc for û. For
each set of (λ1, λ2), to find û that minimizes Lkc is needed, while different (λ1, λ2) correspond to
different values of the dual function. The dual function of each sub-problem for AGV k is defined as
follows:

qk(λ1, λ2) = min
ũ

Lkc (ũ, λ1, λ2). (19)

Thus, the related dual problem can be written as follows:

max
λ1,λ2

q(λ1, λ2) =
NAGV∑
k=1

qk(λ1, λ2). (20)

To useADMM, the following equivalent transformation of the original problem should be performed:

min
NAGV∑
k=1

qk(ũk, λ1, λ2)

s.t. ũk − x = 0,

(21)

where x is the system state vector.

x(t) =
[
x11(t), . . . , x

1
Nn
(t), . . . , xNAGV

1 (t), . . . , xNAGV
Nn

(t)
]T

.
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The penalty parameter ε is updated by a self-adaptive method, as suggested in He, Yang, and
Wang (2000), as follows:

ε(p + 1, t) =
⎧⎨⎩
2ε(p, t), for r(p, t) ≥ 10s(p, t)
ε(p, t)/2, for s(p, t) ≥ 10r(p, t)
ε(p, t), otherwise,

(22)

where r(p, t) and s(p, t) are the primal and dual residuals, respectively. r(p, t) and s(p, t) are defined
as follows:

r(p, t) = ||xT(p, t)− x(p, t)||2, (23)

where

x(p, t) =
(

1
Nn

Nn∑
i=1

x1i (p, t), . . . ,
1
Nn

Nn∑
i=1

xNAGV
i (p, t)

)
is the average preprocessing result for each sub-problem in the state vector at iteration p at time t.

s(p + 1, t) = −ε(p + 1, t)||x(p + 1, t)− x(p, t)||2. (24)

The overall algorithm continues until r(p, t) ≤ rlim or s(p, t) ≤ slim or p = pmax. rlim and rlim are set Q9
to 10−3, as suggested in Chen et al. (2020).

3.2. Serial iterative ADMM

The ADMM algorithm can adopt a serial iterative solution mechanism (S-ADMM): each time, only
one sub-problem is in the computational state, and the shared variable is transferred to another sub-
problem when the computation state is finished. Until all sub-problems have been computed, the
Lagrange multiplier is updated and the next iteration of the optimization calculation is entered.

For the decomposed sub-problem, the decision variable ûk of AGV k at iteration p is computed as
follows:

ûk(p + 1, t) = argmin
(
qk

(
ûk(p + 1, t), λ1(p, t), λ2(p, t)

))
, ∀k ∈ �. (25)

The system state vector is updated as follows:

x(p + 1, t) = 1
NAGV

NAGV∑
k=1

(
ûk(p + 1, t)+ ε

2
(
λ1(p)+ λ2(p)

))
. (26)

The Lagrange multipliers are updated as follows:

λ1(p + 1, t) = λ1(p, t)+ ε(p, t)

(∑
k

(
xki (p + 1, t)− 1

)

λ2(p + 1, t) = λ2(p, t)+ ε(p, t)

(∑
k

(
uki,j(p + 1, t)+ ukj,i(p + 1, t)

)
− 1

)
.

(27)

Lagrangian multipliers λ1 and λ2 are updated using the above equation, and the penalty ε is updated Q10
using Equation (22).

If the penalty ε is large, the objective function value will be inaccurate when searching for a solu-
tion with collisions. If it is too small, the effect of the penalty will not be significant, and the result
may not satisfy the relaxed constraints. By initially setting the Lagrangianmultipliers as zero, the solu-
tion of the original function under extreme conditions (without considering the relaxed constraints)
is obtained. As the penalty parameter increases (within a certain range), the searched solution will
be closer to the optimal solution. When the penalty parameter is too large, it may easily fall into a
suboptimal solution.
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10 X. WU ET AL.

3.3. Parallel iterative ADMM

The ADMM algorithm can also adopt the parallel iterative solution mechanism (P-ADMM): each
time, the sub-problems are solved in parallel, and the shared variables are transferred to another
sub-problem at the same time as the computation is completed. Until all sub-problems have been
computed, the Lagrange multiplier is updated and the next iteration of the optimization calculation
is entered.

The decision variable ûk of AGV k at iteration p is computed as follows:

ûk(p + 1, t) = argmin
(
qk

(
ûk(p, t), λ1(p, t), λ2(p, t)

))
, ∀k ∈ �. (28)

The system state vector is updated as follows:

x(p + 1, t) = 1
NAGV

NAGV∑
k=1

(
ûk(p, t)+ ε

2
(
λ1(p)+ λ2(p)

))
. (29)

The Lagrange multipliers are updated as follows:

λ1(p + 1, t) = λ1(p, t)+ ε(p, t)

(∑
k

(
xki (p + 1, t)− 1

)

λ2(p + 1, t) = λ2(p, t)+ ε(p, t)

(∑
k

(
uki,j(p + 1, t)+ ukj,i(p + 1, t)

)
− 1

)
.

(30)

P-ADMMrealizes the distributed parallel optimization of sub-problems. The advantages of P-ADMMQ17
is that, when multiple computers are used, the computing efficiency will be greatly increased.

3.4. Coordination comparison

Figures 2 and 3 show the AGV controllers’ coordination scheme using the S-ADMM and P-ADMM
decompositions. In Figure 2, the serial iterative solution mechanism is used by S-ADMM. When
the computation is finished, the sub-controller transfers the state variable of the preceding AGVs to
the next sub-controller and output control variables, and the AGVs perform the action. In Figure
3, the parallel iterative solution mechanism is used by P-ADMM. When all of the sub-problems
are in the computational state at the same time, DMPC 1 is designated as the coordinator, and
when the calculation is complete, the other DMPC controllers transfer the state variable to DMPC
Controller 1, DMPC1 outputs the control variable to the other controllers, and the AGVs perform
the action.

Algorithm 1 presents the serial and parallel pseudocode for the ADMM-based distributed motion
planning algorithms. Both the serial and parallel iteration modes offer distinct advantages. In the
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Figure 2. CoordinationQ12 scheme of controllers using S-ADMM.
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Figure 3. Coordination Q13scheme of controllers using P-ADMM.

serial mode, the sub-problems (25) are sequentially solved based on the information available in the
current iteration. In the parallel mode, all of the sub-problems (28) are solved concurrently, utilizing
only the information obtained from the previous iteration.

Algorithm 1 ADMM-based distributed MPC (serial and parallel)
Require: Task assignment of AGVs
1: while t ∈ {0, 1, . . . ,H} do
2: Initialize Lagrangian multipliers λ1 = 0 and λ2 = 0 and parameters ε0 = 10.
3: for iteration p = 1 : pmax do
4: for AGV k = 1 : NAGV do
5: Each AGV determines ûk and x by solving the local sub-problem (25),(26) in serial or

(28),(29) in parallel
6: Update Lagrangian multipliers λ1(p, t) and λ2(p, t) by (27) in serial or (30) in parallel
7: Update primal residual r(p, t) and dual residual s(p, t) by (23), (24)
8: Update penalty coefficient ε(p, t) by (22)
9: end for
10: // Stopping condition
11: if r(p, t) ≤ rlim or s(p, t) ≤ slim or p = pmax, then break
12: p = p + 1
13: end for
14: // Update the state of each AGV and move to next step
15: t = t + 1
16: end while

A comparison of these two modes reveals that the serial mode updates more information during
a single iteration than the parallel mode, potentially leading to a better solution after a single itera-
tion. However, the parallel mode requires less time for a single iteration compared to the serial mode.
Notably, P-ADMM takes less time when the sub-problems are solved in amulti-computer distributed
computing environment. In terms of computation time, the maximum computation time in the par-
allel mode is regarded as the computation time, while the sum of the computation time in the serial
mode is considered as the computation time.

Furthermore, during the implementation of these two modes, it is important to note that the
serial mode does not require full communication coverage, whereas the parallel mode necessitates
full communication coverage for all the AGVs.
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Figure 4. RoadmapQ14 layout of Benchmark 2 as suggested by Nishi et al. (2020).

4. Results and discussion

This section evaluates and discusses the results of the proposedmethodology via theMLDmodel and
the developed solution approaches. Numerical case studies are carried out to assess the performance.
First, the involved case study setting is introduced. Then, the advantages of the S-ADMM and P-
ADMMmethods are assessed in terms of productivity and computation metrics.

4.1. Settings

To evaluate the performance of the proposed planning strategy, a benchmark related to the AGV
roadmap is considered. The benchmark contains an irregular graph with unbalanced connections,
which is derived from a real-world transport company, as shown in Figure 3 and in Nishi et al. (2020).
In Figure 3, it is noted that the roadmap of Benchmark 1 is not regular because the topology is not
squared. The roadmap layouts can be found in related applications for AGVs and robots (Adamo
et al. 2018; Nishi et al. 2020; Yu and LaValle 2016).

To evaluate the performance of the proposed planning strategy, two benchmarks related to two
types of AGV roadmaps are considered. Benchmark 1 corresponds to a squared roadmap graph,
which containsm × m nodes and 2m × (m − 1) links (Yu and LaValle 2016), as introduced in Figure
1. Benchmark 2 contains an irregular graph with unbalanced connections, which is derived from a
real-world transport company, as shown in Figure 4 and in Nishi et al. (2020).

The following four methods are evaluated: centralized MPC (C-MPC), serial ADMM-based dis-
tributed MPC (S-ADMM), parallel ADMM-based distributed MPC (P-ADMM), prioritized MPC
(P-MPC) and dynamic prioritized planning (DMP) (Guney and Raptis 2021).

The mathematical modelling is implemented in Python� on Windows� 10, while solver
Gurobitm 9.0.3 is used for solving the formulated planning problems. The computer hardware is
Intel� Coretm i7-8750 (3.0Hz ) with 16GB of memory.Q18
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Three commonly used key performance indicators (KPIs) are considered as follows.

• The sum of completion times of all the AGVs, which is defined as cost 1.
• The completion time of the last AGV (makespan), which is defined as cost 2.
• Computational time (CT for short), which is the time it takes to compute its optimal solution and

certify its optimality, which is guaranteed by the solver, Gurobi.

The first KPI is stricter than the second since the makespan focuses on the last completed task. Next,
the computational results of the proposed S-ADMM and P-ADMMmethods are evaluated, in com-
parison to the C-MPC, P-MPC andDPPmethods. These experimental results are reported in Tables 2
and 3 for the industrial scenarios.

For each scenario, 20 experiments were tested for comparison in general. In each experiment, the
starting point and the ending point of a particular task were given randomly in advance.

4.2. Experiential results

Tables 2 and 3 show the performance of the five tested methods concerning the industrial scenarios
for Benchmarks 1 and 2. Note that the values of costs 1 and 2 were computed when all the tasks had
been completed. The C-MPC, S-ADMM and P-AMDDmethods outperformed the P-MPC and DPP
methods in terms of productivity objectives (costs 1 and 2). Cost 1 refers to the total completion time,
while cost 2 corresponds to the makespan. The C-MPC, S-ADMM and P-AMDD methods all use a
predictivemotionmodel for all AGVs, so collisions can be predicted in advance, improving transport
productivity over P-MPC and DPP. The two distributed methods (S-ADMM and P-ADMM) yielded
the same productivity objective values as the centralized method (C-MPC). Although using ADMM
decomposition results in a small difference between the value of the augmented Lagrangian function
and the value of the original objective, the values of costs 1 and 2 were collected from the determined
paths, which rely on pure integer variables. Therefore, costs 1 and 2 of these methods are shown
equally in these two tables.

The computation times of these five methods are also reported in Tables 2 and 3. The proposed
P-ADMMmethod achieved the shortest computation time, while C-MPC obtained the longest com-
putation time. The computation time of the proposed P-ADMM method was close to that of DPP.
Meanwhile, owing to the efficient ADMM-based decomposition techniques, the computation time of
these two distributed methods was significantly less than that of C-MPC.

The efficiency of the serial and parallel ADMM decompositions will now be examined.
The convergence behaviours of the difference between the optimal costs by S-ADMM and P-
ADMM are compared in Figure 5. These two methods had the same number of iterations.
The convergence speed of S-ADMM was faster than that of P-ADMM. However, the compu-
tation time of P-ADMM was shorter than that of S-ADMM (as shown in Tables 2 and 3),
indicating that the parallel scheme is more computationally effective than the serial scheme. If
the sub-problems are solved in a multi-computer distributed computing environment, P-ADMM
takes less time. Both of these distributed schemes are effective in terms of computation accu-
racy, achieving the same values for costs 1 and 2 as the centralized method (C-MPC), as
shown in Tables 2 and 3. The features of these two ADMM decompositions are summarized
in Table 4.

Table 3 shows the effectiveness of the proposed ADMM-based decomposition technique, since S-
ADMM and P-ADMM achieve the same values of costs 1 and 2 as C-MPC. Note that the values of
costs 1 and 2 are computed when all the tasks are completed. Since the paths of C-MPC, S-ADMM
and P-ADMM are the same, the values of costs 1 and 2 of S-ADMM and P-ADMM are equal to those
of C-MPC. However, some small errors exist owing to the decomposition technique introduced by
ADMM. Figure 5 provides the converging trajectories.
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L.Table 2. Comparison of the numerical results with respect to Benchmark 1. (Units: seconds.)

Settings C-MPC S-ADMM P-ADMM P-MPC DPP

m NAGV cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT

5 4 25.0 7.8 0.11 25.0 7.8 0.07 25.0 7.8 0.05 25.5 7.9 0.11 26.5 8.3 0.15
5 5 31.1 8.1 0.13 31.1 8.1 0.08 31.1 8.1 0.06 31.3 8.2 0.12 33.0 8.8 0.15
6 5 30.6 8.5 0.24 30.6 8.5 0.17 30.6 8.5 0.12 31.1 8.6 0.27 32.0 9.0 0.15
6 6 35.3 8.7 0.27 35.3 8.7 0.20 35.3 8.7 0.15 35.6 8.8 0.29 36.9 9.2 0.16
7 6 35.9 9.4 0.35 35.9 9.4 0.22 35.9 9.4 0.17 36.2 9.4 0.35 38.0 9.8 0.16
7 7 39.6 9.9 0.46 39.6 9.9 0.26 39.6 9.9 0.19 40.2 9.9 0.36 41.3 10.4 0.28
8 7 39.9 10.2 0.55 39.9 10.2 0.30 39.9 10.2 0.22 40.4 10.2 0.45 42.2 10.8 0.30
8 8 46.0 10.4 0.77 46.0 10.4 0.34 46.0 10.4 0.27 46.7 10.4 0.67 47.9 11.0 0.35
9 8 47.5 11.1 0.84 47.5 11.1 0.42 47.5 11.1 0.29 47.9 11.2 0.71 49.7 11.7 0.36
9 9 52.3 11.7 1.08 52.3 11.7 0.44 52.3 11.7 0.34 52.6 11.7 0.73 49.8 12.2 0.36
10 9 52.5 12.5 2.11 52.5 12.5 0.58 52.5 12.5 0.38 53.1 12.6 1.24 54.6 13.0 0.39
10 10 57.3 12.8 3.35 57.3 12.8 0.71 57.3 12.8 0.46 57.7 13.0 1.76 59.0 13.3 0.45
15 12 172.0 18.7 47.79 172.0 18.7 5.46 172.0 18.7 2.36 174.7 18.8 8.91 176.9 19.4 4.92
15 16 212.9 19.2 55.24 212.9 19.2 7.23 212.9 19.2 2.41 216.5 19.4 13.68 219.8 20.0 7.41
15 20 253.4 18.7 64.77 253.4 18.7 9.44 253.4 18.7 3.27 258.2 18.9 16.81 261.5 19.5 10.26
15 25 316.4 18.3 71.26 316.4 18.3 13.26 316.4 18.3 5.13 320.7 18.7 16.93 332.6 19.2 12.18
15 30 397.2 18.3 90.43 378.3 18.3 17.49 397.2 18.3 6.26 375.6 18.7 22.01 384.2 19.2 14.72
20 12 180.7 24.0 57.81 180.7 24.0 7.41 180.7 24.0 3.13 185.6 24.2 17.91 190.0 24.9 8.01
20 16 242.4 26.5 65.64 242.4 26.5 9.21 242.4 26.5 3.82 245.0 26.6 24.86 253.8 27.5 9.53
20 20 291.6 24.5 75.61 291.6 24.5 14.11 291.6 24.5 5.51 295.3 24.7 28.36 305.0 25.4 12.96
20 25 365.9 25.1 94.36 365.9 25.1 18.24 365.9 25.1 6.81 372.9 25.2 32.88 378.9 25.6 14.14
20 30 437.2 25.4 113.37 437.2 25.4 21.33 437.2 25.4 8.31 445.1 25.5 35.41 453.1 26.0 16.92

Average 152.85 15.45 33.93 152.85 15.45 5.77 152.85 15.45 2.26 154.00 15.57 10.22 157.58 16.14 5.19
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Table 3. Comparison of numerical results with respect to Benchmark 2. (Units: seconds.)Q20

Setting, C-MPC S-ADMM P-ADMM P-MPC DPP

NAGV cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT cost 1 cost 2 CT

3 32.8 13.8 2.93 32.8 13.8 0.47 32.8 13.8 0.32 33.1 13.9 0.63 34.0 14.2 1.06
4 46.7 14.0 3.42 46.7 14.0 0.69 46.7 14.0 0.42 47.2 14.0 0.87 49.3 14.4 1.52
5 57.8 14.3 4.27 57.8 14.3 1.07 57.8 14.3 0.74 58.5 14.3 1.49 60.0 14.8 2.06
6 69.4 14.6 6.27 69.4 14.6 1.68 69.4 14.6 0.92 70.2 14.6 2.07 72.2 15.0 2.34
7 81.3 15.6 11.59 81.3 15.6 1.77 81.3 15.6 1.08 82.6 15.6 2.21 83.8 16.1 2.88
8 98.0 15.3 14.78 98.0 15.3 2.14 98.0 15.3 1.12 99.7 15.4 2.87 101.0 15.8 3.42
9 110.3 15.8 21.64 110.3 15.8 2.97 110.3 15.8 1.27 112.4 15.8 3.96 113.0 16.2 3.70
10 127.7 15.9 29.88 127.7 15.9 3.66 127.7 15.9 1.73 129.2 15.9 4.22 130.6 16.3 3.89
15 185.3 16.0 49.76 185.3 16.0 7.43 185.3 16.0 2.91 188.1 16.1 9.21 189.9 16.7 5.95
20 253.4 16.0 57.66 253.4 16.0 9.07 253.4 16.0 4.07 257.7 16.2 12.89 265.3 16.5 8.71
25 313.8 16.2 68.43 313.8 16.2 12.39 313.8 16.2 5.19 318.2 16.3 16.39 327.4 16.8 11.02
30 375.2 15.9 84.36 375.2 15.9 16.97 375.2 15.9 7.32 381.3 16.1 20.01 390.8 16.4 13.06

Average 145.98 15.3 29.58 145.98 15.3 5.03 145.98 15.3 2.26 148.2 15.4 7.46 151.4 15.8 4.97
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Figure 5. Convergence behaviour of the cost differences from the optimal cost by S-ADMM and P-ADMM.

Table 4. Summarized features of S-ADMM and P-ADMM.

Convergence Calculation
Scheme Type speed time

S-ADMM Serial Fast Long
P-ADMM Parallel Slow Short

Figures 6 and 7 provide the overall performance of the five methods with respect to costs 1 and 2
both on Benchmarks 1 and 2. Figures 6 and 7 show that the average values of costs 1 and 2 of C-
MPC, S-ADMM and P-ADMM are both lower than those of P-MPC and DPP. C-MPC, S-ADMM
andP-ADMMshare the same standard deviation because S-ADMMandP-ADMMobtained the same
values for costs 1 and 2 as C-MPC for all the experiments in each scenario.

Figure 8 shows the same trajectories determined by theC-MPC, S-ADMMandP-ADMMmethods
for a scenario of five AGVs on Benchmark 2. The trajectories of these three methods were identical.
S-ADMM and P-ADMM methods produced not only the same objective values but also the same
trajectories. According to Figure 8, all the motions were collision-free because no AGV stayed at the
same node at the same time.

Note that there exist multiple optimal solutions when solving the same problem with identical
configurations on roadmap, origins and destinations. The solutions of S-ADMM and P-ADMM can
be identical to one of the multiple solutions obtained by the centralized C-MPC when these two
ADMM-based methods terminate under the stopping criterion. This situation is shown in Figure 9,
which has the same objective value as Figure 9 but the trajectories of AGV 1 and AGV 5 are differ-Q21
ent. The solutions of S-ADMM and P-ADMM may be different from the solution obtained by the
centralized C-MPC because multiple optimal solutions exist.



817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

ENGINEERING OPTIMIZATION 17

Figure 6. Overall performance for cost 1 of the five methods on Benchmarks 1 and 2.

C
ol
ou

ro
nl
in
e,
B/
W

in
pr
in
t

Figure 7. Overall performance for cost 2 of the five methods on Benchmarks 1 and 2.

5. Conclusions and future work

In themanufacturing and logistics environments, the decision-making process for AGVmotion plan-
ning is expected to be flexible, robust and scalable. As a result, a novel methodological contribution
to dynamic motion planning of automated guided vehicles in bidirectional guide-path layouts is pro-
posed. A dynamical predictive representation of the material transport process is used to describe it
mathematically. Additionally, serial and parallel distributed planning methods based on the alternat-
ing directionmethod ofmultipliers (S-ADMMandP-ADMM) are proposed to improve the flexibility,
robustness and scalability of the AGV fleet.

The advantages of the proposed distributedmethodologies are demonstrated through case studies
derived from industrial scenarios in comparison to the centralized MPC method and two cutting-
edge dynamic planning methods. With a low computational burden, both S-ADMM and P-ADMM
achieve high productivity metrics (i.e. the sum of completion times and makespan). S-ADMM and
P-ADMM produce the same productivity objective values as the centralized MPCmethod, and both
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Figure 8. TrajectoriesQ15 by the C-MPC, S-ADMM and P-ADMMmethods for a scenario of five AGVs on Benchmark 2.
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Figure 9. TrajectoriesQ16 by another S-ADMM that changes the sequence of updating the Lagrangian multipliers.
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distributed methods produce the same trajectories. Meanwhile, the computation time of these two
distributed methods is significantly less than that of C-MPC owing to the efficient ADMM-based
decomposition techniques. P-ADMM takes less time to compute than S-ADMM, indicating that the
parallel coordination scheme is more efficient than the serial coordination scheme. P-ADMM takes
less timewhen the sub-problems are solved in amulti-computer distributed computing environment.

In conclusion, the proposed algorithms employ ADMM-based decomposition techniques to
improve computational efficiency compared to the centralized method using the predictive dynami-
cal model. Moreover, the proposed algorithms provide a dynamic planning scheme that can be more
resilient and agile under complex and dynamic operation circumstances. These algorithms are well-
suited for decentralized operational architecture, which is the current trend of operating AGVs into
the future for manufacturing industry.

However, the proposed algorithms are not fast enough to support real-time decisions for very-
large-scale cases. There is a need for the further development of more efficient methods to accelerate
computation. Future research will explore the integration of model-based methods and data-driven
methods in a potential planner. Furthermore, the optimal scheduling of horizontal transport vehicles
in the automatic transformation of traditional container terminals will also be considered.
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