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bDipartimento di Ingegneria, Università Degli Studi Roma Tre, via della Vasca Navale, 79 - 00146 Roma, Italy

cDepartment of Maritime and Transport Technology, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands

Abstract

Operations of Automated Guided Vehicles (AGVs) are desired to be more energy-efficient while maintaining high
transport productivity, motivated by the green production requirements. This paper investigates a new energy-efficient
planning problem for determining conflict-free paths of the AGVs in its transport roadmap. In this problem, the ve-
hicle path and transport time in the roadmap are jointly optimized, based on a flexible time-space network (FTSN).
We provide the mathematical problem formulation of the energy-efficient path planning problem. The resulting op-
timization problem is proved to be a non-convex mixed-integer nonlinear programming which is computationally
intractable. We further propose a hybrid metaheuristic that integrates the genetic algorithm and estimation of the dis-
tribution algorithm to improve its computational efficiency. Numerical results show the effectiveness of the developed
algorithm based on the FTSN framework, compared to the existing metaheuristics, the conventional path planning
method, and a commercial solver. The proposed method has a wide application in improving energy use of material
handling, providing a guiding significance on promoting cleaner production of flexible manufacturing systems.

Keywords: Automated Guided Vehicles, Energy Efficiency, Flexible Time-Space Network Model, Hybrid
Metaheuristic

1. Introduction

Automated Guided Vehicles (AGVs) are autonomous vehicles designed for horizontal movement of materials.
Due to the advantages of productivity improvements, labor cost savings, and environmental benefits, AGVs have been
widely used in manufacturing (He et al., 2022; Cai et al., 2022), warehouse (Hu et al., 2017; Yoshitake et al., 2019),
container terminals (Xin et al., 2015b; Yue et al., 2021) and other applications. A market report forecasts fast growth
in the AGV market from 2018 to 2025 (Ryck et al., 2020).

The efficiency of the AGVs systems is closely related to the performance of the production and logistics systems.
For the company managers, the minimization of the completion time is the primary objective. Producers aim to
maximize the production rates to meet the increasing requirements made by customers. High production rates result
from optimizing the completion time of the AGVs when finishing the assigned tasks.

The energy-aware path planning for the operations of multiple AGVs is motivated by green production require-
ments (Bechtsis et al., 2017; van Duin et al., 2018). However, there are several challenges to be addressed for this
energy-aware planning problem. The first challenge is that two objectives (time-related objective and energy-related
objective) must be considered at the same time. The transport process involves both event-driven dynamics and time-
driven dynamics (so-called hybrid dynamical system) for minimizing the completion time and the energy consumption
(Xin et al., 2014). To search for the energy-efficient paths of the AGVs, a mathematical model that is capable to rep-
resent these two types of dynamics needs to be formulated carefully, and then the AGV can be better coordinated
by accelerating and decelerating properly for energy saving. Furthermore, the energy consumption representation in
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practice is nonlinear and the resulting optimization problem is mixed-integer nonlinear programming (MINLP), with
consideration of the path sequencing in the discretized AGV roadmap. The MINLP in general is more challenging to
be solved than mixed integer programming (MIP) as this is commonly seen in path planning problems.

In this paper, we focus on improving the energy efficiency of the AGV operations, i.e., using less energy to achieve
the same level of service. The energy saving objective is less important than the time saving objective. The latter is
the primary objective because the business performance is essentially determined by productivity (Xin et al., 2014).
To maximize the profit, the producers tend to reduce AGV’s energy consumption without deteriorating the service
of high productivity. Therefore, energy consumption is expected to be reduced without deteriorating the time-related
performance to further decrease the operating costs. To improve the energy efficiency of the AGVs when planning
their paths for transporting materials, we propose a flexible time-space network model that is formulated as a dedicated
MINLP.

1.1. Related work
This section reviews the routing of multiple AGVs and the related energy saving strategies. Then, the approaches

based on the flexible time-space network model are also reviewed.

1.1.1. Routing of multiple AGVs
For the AGVs, operational planning problems are further classified into two directions: task allocation and path

planning. The task allocation problem seeks optimal assignments and sequences of tasks that are carried out by AGVs
while satisfying resource constraints (Zou et al., 2020). When the task involves a time-related objective, the task
allocation problem is regarded as a scheduling problem. Energy-efficient scheduling problems have been extensively
investigated in the manufacturing systems (Barak et al., 2020). For a path planning problem, feasible paths are
determined to avoid collisions and deadlocks due to safety and space constraints.

The scheduling problem and the path planning problem are closely coupled, and some researchers investigate how
to integrate these two problems to improve the overall performance of multiple AGVs (Saidi-Mehrabad et al., 2015;
Xin et al., 2015a; Miyamoto and Inoue, 2016). For instance, Miyamoto and Inoue (2016) consider dispatching and
routing decisions simultaneously by considering that each vehicle has a finite capacity. However, driven by future
requirements like flexibility, robustness, and scalability, the current trend for planning the AGVs is decentralization
(Ryck et al., 2020). Decentralized methods decompose the overall problem into smaller subproblems, in which
scheduling and routing decisions are formulated hierarchically (Demesure et al., 2018; Fanti et al., 2018), where
the scheduling problem is solved at a higher level, while the path planning is formulated at a lower level. Here, we
focus on the path planning problem.

When using the AGV, the mesh routing environment is a common layout to configure the AGV path in production
and logistics (Yi et al., 2019; Nishi et al., 2020; Polten and Emde, 2021). The mesh routing environment uses fixed path
guided vehicles to simplify the planning of multiple vehicles, and it is suitable for limited working areas (Miyamoto
and Inoue, 2016). When the mesh routing is considered, time-space network (TSN) models have been proposed for
determining feasible conflict-free vehicle paths by modeling time constraints and space constraints (Miyamoto and
Inoue, 2016; Nishi et al., 2020). In these TSN-based path planning problems, a single objective problem is typically
considered to minimize some productivity indices (e.g., the completion time). These TSN models take into account a
fixed transport time for two adjacent nodes, which may lose possible opportunities for reducing energy consumption
by changing these transport times. Each AGV must wait at a certain node to avoid collisions with other AGVs that
may occupy its driving path, this collision avoidance strategy can lead to an increase in the completion time of some
tasks.

1.1.2. Energy saving when routing the AGVs
Compared to the extensive research that targets the completion time minimization, little attention has been paid to

the energy-aware path planning for the operations of multiple AGVs (Adamo et al., 2018; Riazi et al., 2020). Here,
we review these works. In Adamo et al. (2018), a conflict-free pick-up and delivery problem with time windows is
studied to optimize the path and speed of AGVs. A branch-and-bound algorithm is developed to determine the path
and the speed of AGVs on each arc, by satisfying the time window and minimizing the total energy consumption.
However, a mathematical formulation for energy-aware path planning of AGVs is still missing, and the relationship
between these two objectives is not investigated.
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Riazi et. al. studied the energy minimization problem for large-scale AGV systems (Riazi et al., 2020). They
identified that travel speed and distance are the most important factors that affect the energy consumption of the AGV
system. In Riazi et al. (2020), energy minimization is considered separately after determining the path of AGVs, and
only the effect of the maximum speed on the objectives is analyzed. Therefore, it is still unclear how the AGV speed
and the path should be optimized jointly to improve the energy efficiency of its path planning.

1.1.3. Flexible time-space network model
TSN models have been widely used for modeling routing problems in the transportation and logistics systems

(Nishi et al., 2005; Miyamoto and Inoue, 2016; Nishi et al., 2020). In such TSN models, a transportation network (or
roadmap) is considered to optimize the routes of vehicles, and the transport time between every two adjacent nodes is
fixed.

In railway applications, a variant of the TSN model referred to as the flexible time-space network (FTSN) model,
has been studied (Meng and Zhou, 2014; Zhang et al., 2019). In such an FTSN model, the transport time between
the nodes of the railway network becomes a decision variable, allowing for jointly optimizing the routes and passing
times at each station of the selected route, to improve their punctuality. In Meng and Zhou (2014), the FTSN model is
built based on network cumulative flow variables. The objective is to minimize the total deviation time of all involved
trains (without minimizing the energy consumption), and an integer programming problem is solved by Lagrangian
relaxation. A systemic summary regarding these FTSN models is reported in Table 1 of Zhang et al. (2019).

It is observed that the existing FTSN models are specialized in railway applications and the optimization objective
is limited to productivity metrics (such as total deviation time and the total journal time). Because the operations of
logistics systems, such as AGVs, are considerably different from the railway applications, such a flexible modeling
framework is not implemented yet for the AGVs to save energy. The energy-efficient path planning problem of AGVs
using the FTSN modeling framework remains to be investigated further.

1.1.4. Overall assessment of the literature
AGVs are a crucial part of the production systems, and AGVs provide a range of benefits across environmental and

social sustainability dimensions for reducing energy consumption and emissions (Bechtsis et al., 2017; Barak et al.,
2020). The operations of AGVs must be energy-efficient to meet not only economic but also environmental criteria.

At the operational level, energy-efficient path planning of AGVs has not been sufficiently investigated in the
literature. First of all, the current works cannot provide a mathematical formulation to reduce energy consumption
while maintaining a high transport productivity. This type of mathematical formulation is needed to manage the
relationship between the energy consumption and the total transport time. Then, the current FTSN models typically
solve an MIP, while our FTSN model requires solving an MINLP to jointly minimize energy consumption and the
sum of the completion times. Solving this challenging MINLP problem (resulting from the FTSN model) requires
efficient and effective algorithms to be developed when introducing energy-related objectives and constraints.

1.2. Contributions of this paper

The contributions of this paper are given as follows:

• We propose a flexible time-space network model (FTSN) for energy-efficient and collision-free path planning
of AGVs. The proposed FTSN model differs from the conventional TSN model that has fixed transport times,
as proposed in Miyamoto and Inoue (2016) and Nishi et al. (2020). We extend the work in Yin and Xin (2019)
that provides the basis to resolve collision conflicts and further study energy-efficient path planning of AGVs in
the mesh roadmap environment.

• A mathematical representation is formulated to integrate the optimization of the operational speed when plan-
ning the conflict-free paths of AGVs. This optimization problem that uses the lexicographic strategy is formu-
lated as an MINLP and the resulting MINLP is proved to be a non-convex formulation.

• A customized hybrid metaheuristic is developed to solve the studied MINLP problem. A new encoding scheme
and customized algorithm procedures are proposed, taking into account the feature of the considered path plan-
ning problem. The developed metaheuristic provides higher quality solutions for solving the MINLP compared
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to the existing metaheuristics, such as Genetic Algorithm (GA) and Population-Based Incremental Learning
(PBIL) (Tang et al., 2021; Wu and Wang, 2018).

The remainder of this paper is organized as follows: Section 2 introduces the FTSN model for describing the
transport process of the AGVs. In Section 3, a customized hybrid metaheuristic is further proposed to determine
energy-efficient paths of vehicles. Section 4 conducts case studies and analyzes the numerical results. Section 5
concludes this paper and provides future research directions.

2. Modeling framework

This section defines the research problem for planning paths of AGVs in the mesh routing environment. The
FTSN model and framework are then introduced to determine energy-efficient and collision-free paths of AGVs.

2.1. Problem description

In manufacturing or warehouse systems, AGVs are used to transport materials between their origins and destina-
tions in a mesh routing environment.

In the mesh routing environment (Ryck et al., 2020), nodes represent loading and unloading locations and inter-
sections of the roadmap, each edge is a connected path between two adjacent nodes. Every task is defined for moving
the material by a particular vehicle from their specific origin to destination.

Regarding this process, the following important assumptions are made:

• The size of each AGV is sufficiently small compared with the unit path length, regarding an AGV as a point.

• The number of vehicles is known and every transportation task is assigned to one AGV already.

• A pickup node (start node) and a delivery node (end node) of each task are given in advance. There are no
duplicated nodes among the assigned tasks.

• Each AGV can transport a single load at any time.

• Each AGV can only stop at a network node and no more than one AGV can occupy a node at the same time.

• The turning time is included in the transport time.

• Each arc of the network can be occupied by one AGV at any time.

2.2. FTSN representation

This part gives the modeling framework based on the FTSN representation, which is used for planning the
collision-free paths of AGVs in an energy-efficient way.

As mentioned in Section 1.1, the FTSN representation allows to optimize the transport time and the route jointly
in a transportation network. For planning the path of the AGVs, this representation is different from the existing TSN
modeling frameworks, which have fixed transport times in their roadmap network (Nishi et al., 2005; Miyamoto and
Inoue, 2016). Because flexible transport times are considered in the FTSN representation, the operation speed of each
AGV can be optimized with the route jointly to reduce the energy consumption of the AGVs. Here, we provide the
mathematical formulation of the FTSN model based on the framework proposed in Meng and Zhou (2014).

In the FTSN representation, we consider a directed graph G = (V,E) (k ∈ {1,2, ..,N}) for N AGVs. V is the
collection of nodes, while E = {(i, j)|i ∈V, j ∈V i , j} is the collection of arcs. Arc (i, j) maps the path from node i
to j for two adjacent nodes. Each vehicle can change the path at node i if multiple nodes are connected to node i.

We consider a planning horizon T×∆t that is discretized equally into a set of time slots, denoted by {∆t,2∆t, ...,T×
∆t}. ∆t is a time slot and T is the total number of time slots. As a result, the time-space network decomposes the
overall routing process of multiple robots into several time slots. For each time instant t ∈ {1,2, ..,T}, each AGV can
either stays at a node or move within the arc between two adjacent nodes. During each time interval, the detailed path
will be considered to avoid collisions among these AGVs.
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Table 1: Defined parameters and decision variables in the FTSN model
Parameter Description
V Set of all nodes, {1,2, ...,N}
Φ Set of time indices, {1,2, ...,T}
ψ Set of vehicle indices, {1,2, ...,K}
i, j,n Node index i, j,n ∈V
k Vehicle index, k ∈ ψ

t Time index, t ∈Φ

E Set of all arcs (i, j)
O Set of start nodes of AGVs, {o1, ...,ok, ...,oN}
S Set of destination nodes of AGVs, {s1, ...,sk, ...,sN}
Ni Set of neighbor nodes of node i
Es(i) Set of arcs ending at node i
Tstart,k Start time for vehicle k
Tmin(i, j) Minimal time between nodes i and j
Variables Description
x(i, j,k) Binary, x(i, j,k) = 1 if arc (i, j) is selected by vehicle k, otherwise x(i, j,k) = 0
y(i, j,k, t) Binary, y(i, j,k, t) = 1 if vehicle k occupies arc (i, j) at time t, otherwise y(i, j,k, t) = 0
a(i, j,k, t) Binary, a(i, j,k, t) = 1 if vehicle k has arrived at arc (i, j) by time t, otherwise 0
d(i, j,k, t) Binary, d(i, j,k, t) = 1 if vehicle k has left arc (i, j) by time t, otherwise 0
T T (i, j,k) Integer, transport time for arc (i, j) of vehicle k

Before detailing the proposed FTSN model, the defined parameters and variables are introduced in Table 1. The
FTSN model includes space constraints, time constraints, and time-space constraints; these three parts are next given.
Part 1: space constraints

∑
j∈Nok

x(ok, j,k) = 1, ∀k ∈ ψ (1)

∑
i∈N j

x(i, j,k) = ∑
n∈N j

x( j,n,k),∀k ∈ ψ, j ∈V, j , ok, j , sk (2)

∑
i∈Nsk

x(i,sk,k) = 1, ∀k ∈ ψ (3)

Part 2: time-space constraints

d(i, j,k, t)≤ a(i, j,k, t), ∀k ∈ ψ,(i, j) ∈ E, t ∈Φ (4)

∑
i∈N j

d(i, j,k, t) = ∑
n∈N j

a( j,n,k, t),∀k ∈ ψ, j ∈V, j , ok, j , sk, t ∈Φ (5)

x(i, j,k) = a(i, j,k,T ), ∀k ∈ ψ,(i, j) ∈ E (6)
y(i, j,k, t) = a(i, j,k, t)−d(i, j,k, t),∀k ∈ ψ,(i, j) ∈ E, t ∈Φ (7)

∑
k

y(i, j,k, t)+∑
k

y( j, i,k, t)≤ 1, ∀(i, j) ∈ E, t ∈Φ (8)
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Part 3: time constraints

T T (i, j,k) = ∑
t
(t× ((d(i, j,k, t)−d(i, j,k, t−1))

− (a(i, j,k, t)−a(i, j,k, t−1))), ∀k ∈ ψ,(i, j) ∈ E (9)
T T (i, j,k)≥ Tmin(i, j)× x(i, j,k), ∀k ∈ ψ,(i, j) ∈ E (10)

∑
k

d(i, j,k, t)−∑
k

d(i, j,k, t−1)≤ 1, ∀(i, j) ∈ E, t ∈Φ (11)

d(i, j,k, t)≥ d(i, j,k, t−1), ∀k ∈ ψ,(i, j) ∈ E (12)
a(i, j,k, t)≥ a(i, j,k, t−1), ∀k ∈ ψ,(i, j) ∈ E (13)

Equations (1)-(3) correspond to the space constraints on the start node, the intermediate node and the destination
node of each AGV in the roadmap, respectively. Equation 1 ensures that only one adjacent node of the start node ok
for AGV k is selected. Equation 2 guarantees the route continuity for AGV k. Equation 3 makes sure that only one
adjacent node for the end node sk of AGV k is selected.

Equation (4) is the time constraint of AGV k for its arrival time and its departure time at arc (i, j). a(i, j,k, t) and
d(i, j,k, t) are cumulative flow variables to denote if AGV k has reached or left arc (i, j) by time t. Since AGV k leaves
after its arrival for arc (i, j), Equation (4) holds. Equation (5) is arc-to-arc transition constraint, aiming to guarantee
d(i, j,k, t) = a( j,n,k, t) if the adjacent arcs (i, j) and ( j,k) are both used for AGV k. Equation (6) maps the cumulative
flow variable a(i, j,k, t) in the time-space network to the graph variable x(i, j,k) in the physical network, if arc (i, j) is
selected by AGV k to traverse the roadmap from its origin to destination. Equation (7) describes the relationship of the
variable y(i, j,k, t) and the cumulative flow variables (a(i, j,k, t) and d(i, j,k, t)). The variable y(i, j,k, t) represents
whether arc (i, j) is occupied by AGV k at time t, and this occupancy is expressed by the difference between a(i, j,k, t)
and d(i, j,k, t). Equality (8) guarantees that each arc can be occupied by at most one AGV at any time t.

Equation (9) constraints on transport time T T (i, j,k) on arc (i, j) by AGV k, which is computed by the difference
between the departure and arrival times of AGV k when occupying arc (i, j). For the sake of compactness, these arrival
and departure times (defined as A(i, j,k) and D(i, j,k)) can be calculated by a(i, j,k, t) and d(i, j,k, t), as follows:

A(i, j,k) = ∑
t
(t× (a(i, j,k, t)−a(i, j,k, t−1))) ,∀k ∈ ψ,(i, j) ∈ E (14)

D(i, j,k) = ∑
t
(t× (d(i, j,k, t)−d(i, j,k, t−1))) ,∀k ∈ ψ,(i, j) ∈ E (15)

Equation (10) gives the minimum transport time on arc (i, j) by AGV k. Constraint (11) represents that for each arc
at most one AGV can leave at any time. Constraints (12) and (13) provide time connectivity by using the cumulative
flow variables (a(i, j,k, t) and d(i, j,k, t)), indicating that a(i, j,k, t) or d(i, j,k, t) has to be 1 for all later moments if
AGV k has reached or departed from arc (i, j) at time t.

Here, we use Fig. 1 to better understand the occupancy of arc (i, j) by AGV k via the cumulative flow variable
(a(i, j,k, t), d(i, j,k, t)) in the considered flexible time-space network.

k

a i j k t

d i j k t

A i j k

D i j k

t

Figure 1: Illustrative example of occupancy of arc (i, j) by AGV k via the cumulative flow variables.
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Fig. 1 shows that a(i, j,k, t) = 1 for t ≥ 6 and d(i, j,k, t) = 1 for t ≥ 8. This indicates that AGV k reaches and leaves
arc (i,j) at t = 6 and t = 8, due to the definitions of a(i, j,k, t) and d(i, j,k, t) in Table 1. Meanwhile, it is observed that
the arc (i, j) is occupied by AGV k at t = 6 and t = 7, using Equation (7). It is noted that a(i, j,k, t)−a(i, j,k, t−1) = 1
only when t = 6 for the arrival, while d(i, j,k, t)−d(i, j,k, t−1) = 1 only when t = 8 for the departure. In this case,
A(i, j,k) = 6 and D(i, j,k) = 8, as computed by Equations (14)-(15).

2.3. The planning architecture

This part proposes a hierarchical architecture for energy-efficient path planning of AGVs based on the FTSN
model, illustrated in Fig. 2. Hierarchical planning decomposes a complex decision problem into smaller subproblems
and solve the overall problem effectively, the planning procedures are given as follows:

1. The time controller of AGV k computes the minimal transport time Tmin(i, j,k) on the arcs of the roadmap;
2. The supervisory controller receives these minimal transport times from each AGV time controller;
3. The supervisory controller determines the optimal transport time T T (i, j,k) and the schedule information

A(i, j,k) and D(i, j,k). The obtained schedule are then sent to the time controller of each AGV;
4. The time controller of each AGV sends the transport times on the visited arcs to its speed controller. The speed

controller of AGV k designs a control algorithm to track speed v(k, t) regarding the schedule information.

In the following sections, we focus on solving the optimization problem decided by the supervisory controller.

K

K

A i j

D i j

TT i j

A i j

D i j

TT i j

A i j K

D i j K

TT i j KT i j T i j T i j K

Figure 2: The hierarchical control architecture for the multiple AGVs.

2.4. Energy-efficient planner

This section proposes an energy-efficient planner based on the FTSN model presented in Section 2.2. We introduce
the two types of objective functions and give an overall formulation of the energy-efficient optimization problem when
introducing energy-related objectives and constraints.

2.4.1. Time-related objective
For a logistics system (e.g. warehouse or manufacturing), the primary objective is to minimize the completion

time of all the tasks. As suggested in Murakami (2020), the objective defined as J1 is to minimize the sum of the
completion time of all given tasks. Compared to the makespan (the maximum of all completion times), this objective
is more strict. For AGV k, the task completion time is expressed as ∑(i,sk)∈Es(sk)

D(i,sk,k), so J1 is represented as
follows:

J1 = ∑
k

∑
(i,sk)∈Es(sk)

D(i,sk,k). (16)
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If J1 is considered, the corresponding optimization problem, which is defined as P1, is given as follows:

(P1) minJ1

s.t. (1)− (13).

This optimization is Mixed Integer Programming (MIP), which can be handled by commercial solvers, like Gurobi
(Edward and Rothberg, 2014). The minimum value of J1 solved by the problem P1 is denoted as J1,min.

2.4.2. Energy-related objective
The energy consumption, defined as J2, consists of the following parts (Young et al., 2013):

J2 = Ja + Jr, (17)

where Ja is the part resulting from the vehicle acceleration, while Jr is the part generated by the rolling resistance. As
the vehicle speed is relatively low, the energy consumption coming from air drag is neglected.

The energy consumption resulting from vehicle acceleration Ja is given as follows:

Ja = 0.5M∑
k

∑
t

z(k, t)× [v2(k, t)− v2(k, t−1)], (18)

where M is the AGV weight, v(k, t) is the speed from t−1 to t and v(k, t) ∈ [0,vmax] (vmax is the maximal speed). We
define the variable z(k, t) as follows:

z(k, t),

{
1 v(k, t)≥ v(k, t−1)
0 v(k, t)< v(k, t−1)

(19)

Regarding Jr, the traction force f (i, j,k) of AGV k on arc (i, j) is represented as follows:

f (i, j,k) = MgCr, (20)

where Cr is the coefficient of rolling resistance. Since energy is the product of force and distance, Jr can be described
as follows:

Jr = ∑
k

∑
(i, j)

MgCr ·S(i, j) · x(i, j,k), (21)

where S(i, j) is the distance for arc (i, j).
To obtain energy-efficient paths for AGVs, we give the direct optimization problem (defined as P2) in a lexicographic-

form (Pérez-Cañedo and Concepción-Morales, 2020), which is represented as follows:

(P2) minJ2

s.t. J1 ≤ J1,min,

(1)− (13).

However, the problem P2 cannot be solved as a standard optimization formulation because J2 depends on the
condition z(k, t) = 1. We next rewrite the problem P2 as a describable standard optimization problem to be solved.

Theorem 1. The problem P2 can be formulated as a describable mixed-integer programming problem to be solved.

Proof. In Ja, there are two variables, v(k, t) and z(k, t). v(k, t) can be represented by (22) directly. But not every arc
(i, j) is visited for the AGV k, the decision variable T T (i, j,k) may be zero that Equation (22) is not feasible.

v(k, t) = ∑
(i, j)

y(i, j,k, t) ·S(i, j)/T T (i, j,k) (22)

It is noted that, due to the condition constraint in (19) of z(k, t), we cannot optimize J2 in P2 directly. We introduce
new variables and constraints to deal with the two kinds of circumstances.
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For v(k, t), we introduce a discretized integer number µ (µ ∈ {1,2, ..,h}, h is set as the maximum number of time
slots the AGV moves on the arc) for T T (i, j,k) as follows:

T T (i, j,k) = µ×∑
µ

L(i, j,k,µ), ∀k ∈ ψ,(i, j) ∈ E, (23)

where L(i, j,k,µ) is a binary decision variable to select an element µ . With this, v(k, t) can be further described as
follows:

v(k, t) = ∑
(i, j)

y(i, j,k, t)
S(i, j)

µ×∑µ L(i, j,k,µ)

= ∑
(i, j)

y(i, j,k, t)∑
µ

L(i, j,k,µ)S(i, j)
µ

,∀k ∈ ψ, t ∈Φ.

(24)

For formula (19), −vmax ≤ v(k, t)− v(k, t − 1) ≤ vmax. Based on the method in (Bemporad and Morari, 1999),
formula (19) is equivalent to the following inequalities:

v(k, t−1)− v(k, t)≤ vmax(1− z(k, t)), (25)
v(k, t−1)− v(k, t)≥ ε− z(k, t)(vmax + ε), (26)

where ε is a small tolerance (typically the machine precision).
By substituting v(k, t) via Equation (24) into (18), and we can have a nonlinear objective function subject to linear

constraints.
Ultimately, we reformulate the problem P2 as an MINLP as follows:

(P3) minJ2

s.t. J1 ≤ J1,min,

(1)− (13),(23)− (26).

For our path planning problem, the first goal is the shortest completion time of each task, which has an important
impact on the production efficiency of the system. On this basis, the energy consumption target is further considered.
The energy consumption of the AGVs is composed of the energy consumption generated by rolling resistance and the
energy consumption generated by vehicle acceleration. Among them, the energy consumption generated by rolling
resistance is determined by variable x(i, j,k), which is related to the path length of AGVs; the energy consumption
generated by vehicle acceleration is determined by the variables z(k, t) and v(k, t), which are related to the vehicle
speed change during the AGV driving.

Property 1. The optimization problem P3 is a non-convex MINLP.

Proof. For the nonlinear objective function, the Hessian matrix of z(k, t)y(i, j,k, t)2L(i, j,k,µ)2 is not positive definite,
and the problem P3 is a non-convex MINLP.

The problem P3 is proved as a non-convex MINLP, and non-convex MINLPs are regarded as difficult optimization
problems and usually turn out to be NP-hard (Burer and Letchford, 2012). The resulting problem is not computa-
tionally efficient when solved by the existing commercial MINLP solver Baron, as shown in the results section. The
following section proposes an efficient meta-heuristic algorithm for providing high-quality solutions in a reasonable
computation time.

3. Solution approach

This section proposes a new algorithm to efficiently solve the formulated non-convex MINLP problem (P3). The
proposed algorithm uses a hybrid metaheuristic, integrating the genetic algorithm (GA) and the estimation of distri-
bution algorithm (EDA). For solving the MINLP problems, GA has shown its capability (Young et al., 2007; Tang
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et al., 2021). However, our MINLP includes two aspects of decision variables: path and motion time. When the
motion time of the AGV is incorporated into the decision variables, the decision dimension becomes significantly
higher than the optimization problem without optimizing the motion time. GA may thus have slow convergence rate,
due to insufficient local search ability and easy falling into local optimal. To address this drawback, GA is integrated
with other metaheuristics to improve its search ability (Lee et al., 2019).

In the proposed hybrid metaheuristics, we integrate GA with EDA to determine the paths and motion times of
the AGVs, respectively. The EDA is capable to deal with high-dimension complex decision problems (Hauschild and
Pelikan, 2011). However, the paths need to satisfy the continuity constraints and the path probability model of EDA
cannot be directly established. Considering the efficiency of GA to obtain a feasible path (Farooq et al., 2021), we
use GA to search for the paths of AGVs. Regarding the motion times, the motion time is decided within a continuous
range, and the probability model of EDA can be easily obtained.

3.1. Encoding

When designing the metaheuristics, the encoding scheme is crucial for the solution quality (Tang et al., 2021;
Pascariu et al., 2022). For solving the considered MINLP problem, a key step is to design a suitable encoding scheme,
which fits the FTSN framework.

To match the FTSN framework, a two-dimension encoding scheme is designed for each individual X . Each chro-
mosome contains two types of information in two dimensions individually. Dimension 1 includes the path node se-
quence X r,k of the AGVs by following constraints (1)-(3), while Dimension 2 gives the transport time X t of the AGVs,
as illustrated in Fig. 3(a). X r,k =

[
X r,k

1 , · · · ,X r,k
l , · · · ,X r,k

N

]
, while X t,k =

[
X t,k

1 , · · · ,X t,k
l , · · · ,X t,k

N

]
, l ∈ {1,2, · · · ,N}. X r,k

l

represents the node located at the lth position of X r,k, and X t,k
l denotes the transport time located at the lth position of

X t,k. The encoding length used here is N×K.
For Dimension 1, origin node Ok for AGV k corresponds to xr,k

1 , while its destination node Sk corresponds to one
of the path nodes in X r,k

l . For Dimension 2, the value of X t,k
1 is zero, because xv,k

1 is the origin node. X r,k
l (1 < l ≤ N)

corresponds to the transport time T T (X r,k
l−1,X

r,k
l ,k) spent on arc (X r,k

l−1,X
r,k
l ) by AGV k. Note that the location of Sk is

the node between X r,k
l and X r,k

T . Under this condition, the nodes after Sk become meaningless and the related transport
time becomes zero.

k N

k N

X X X

X X X

X

X

(a) Composition of X in the designed scheme. (b) Example of the designed scheme.

Figure 3: Illustration of the designed encoding that fits the FTSN framework.

We use the simple example shown in Fig.3(b) to illustrate the designed encoding scheme (K = 2, N = 5). The path
sequences are as follows: AGV 1: 1 2−→ 3, AGV 2: 4 1−→ 3 1−→ 5. The nodes 1 and 4 are the origin and destination
nodes of AGV 1, while the nodes 4 and 5 are the origin and destination nodes of AGV 1. For the transport time,
T T (1,3,1) = 2 for AGV 1, while T T (4,3,2) = 1 and T T (3,5,2) = 1 for AGV 2. The path sequences in Dimension 1
will be updated by GA while the transport times in Dimension 2 will be improved by EDA, using our proposed hybrid
metaheuristic.

3.2. Algorithm

In the proposed hybrid metaheuristic, we integrate GA and EDA to determine the paths and the motion times of
the considered AGVs.

Table 4 gives the flowchart of the proposed hybrid metaheuristics. Based on GA and EDA, our algorithm is a
population-based metaheuristic. The entire population (defined as P) consists of three sub-populations Pt, Pe and Pl, to
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Iter iter

P

iter

Iter Iter

Figure 4: Flowchart of the proposed hybrid metaheuristic.

maintain the diversity of updating transport time T T (i, j,k). Pe represents the sub-population with the feature of the
shortest transport time, Pe represents the sub-population with the feature of the energy-saving transport time, and Pl
represents the sub-population with the learning feature of the transport time. The ratio of these three sub-populations
is set to 1:1:2, as suggested in Wu and Wang (2018).

In each sub-population, the elite strategy is considered to select a certain ratio of best solutions after evaluating
the population fitness. For generating new solution candidates, Dimension 1 of solution X is updated by the mutation
strategy using the GA, while Dimension 2 of the solution X is updated by the population-based incremental learning
(PBIL) to construct the probability distribution model. After generating the new solutions, the infeasible solutions
will be repaired. The algorithm continues until the maximum iteration is reached.

As for the GA used in the hybrid metaheuristic, the mutation strategy is used to customize the GA and efficiently
construct path sequences. The crossover strategy is not suggested because it is observed that the crossover could result
in longer computation times and deteriorate the solution quality when solving the routing problem (Halim and Ismail,
2019). For the EDA, PBIL is employed to update the probability matrix for generating the transport times, because
the transport times of two successive arcs are independent and PBIL has an effective learning strategy (Meng et al.,
2016).

3.2.1. Solution generation
The generated solutions are based on the selected elite solutions. Regarding the selection, the top-ranking method

is employed.
Regarding Dimension 1 of the new solutions, three mutation operators (flip, swap, and slide) of the GA are used

to update the path of AGVs. The flip mutation works by randomly choosing two positions in the chromosome and
reversing the order in which the values appear between those positions. The swap operator randomly swaps the values
of two positions in the solution chromosome. For the slide operator, two positions in the chromosome are randomly
selected, and the contents between these two positions move one position to the left. The details of these operations
are given in Halim and Ismail (2019).
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For Dimension 2, the PBIL algorithm is adapted to construct the probability distribution model. The time proba-
bility matrix, defined as Ck(iter), is to compute the transport time xt,k

l for AGV k at iteration iter. The composition of
Ck(iter) is given as follows:

Ck(iter) =



ρk
11(iter) · · · ρk

1h(iter)
...

...
ρk

l1(iter) · · · ρk
lh(iter)

...
. . .

...
ρk

N1(iter) · · · ρk
Nh(iter)

 (27)

where ρk
lµ(iter) represents the probability piter(x

t,k
l = µ).

In the PBIL algorithm, Ck(iter) is adjusted to make the populations evolve towards the excellent individuals,
element ρlµ(iter+1) of this matrix is updated according to the elite populations, as follows:

ρ
k
lµ(iter+1) = (1−α)ρk

lµ(iter)+α
1
E

E

∑
s=1

Ik,s
lµ (iter) (28)

Ik,s
lµ (iter) =

{
1, if X t,k

l = µ in the sth elite solution
0, else,

(29)

where α ∈ (0,1) is the learning rate and Ik,s
lµ (iter) is the indication function corresponding to the sth solution of the

elite population by AGV k at iteration iter. E is the number of the elite populations. After updating the probability
matrix, the second chromosome needs to be sampled by them respectively, such that the population P(iter+ 1) are
generated for the next iteration.

Note that Ck(iter) is updated in three sub-populations Pt, Pe and Pl, corresponding to three notations defined as
Ck

t (iter), Ck
e(iter) and Ck

l (iter). The updates of Ck
t (iter), Ck

e(iter) and Ck
l (iter) are the same as presented in Equations

(27), (28), and (29). The initializations of Ck
t (iter), Ck

e(iter), and Ck
l (iter) are provided in Appendix.

3.2.2. Fitness Function
F(X) is the fitness function of solution X that consists of two parts: the objective function J(X) = J2 and the

penalty function p(X). The aim is to obtain the solution with the lowest energy consumption for the shortest total
completion time.

The penalty function p(X) avoids searching in infeasible parts of the solution space at iteration iter, as shown in
Equations (30)-(32).

p(X) = p1(X)+ p2(X) (30)

p1(X) = (Tend(X)−T 1
end)×R1 (31)

p2(X) =

{
R2 if X unsatisfies Equation (8)
0 else,

(32)

where T 1
end is the shortest completion time computed by using the conventional TSN model, and R1 and R2 are

relatively large constants. p1(x) guarantees that the solutions with the shortest completion time have a better fitness,
and p2(x) ensures that the fitness values of infeasible solutions are very poor.

3.2.3. Repairing operations
To ensure the feasibility of solution X , individuals in population P may need to be repaired. In principle, Dijkstra

algorithm is used to repair the unconnected paths in Dimension 1. The specific repairing operations are as follows:

X r,k(l1 : l1 +1) = D[xr,k
l1
,xr,k

l1+1], i f xr,k
l1
< Es(xr,k

l1+1) (33)

X r,k(l2 : l3) = [X r,k
l2
], i f X r,k

l2
= X r,k

l3
(34)
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Algorithm 1 The designed HGE based on the FTSN model
Input: Task assignments for all the AGVs
Output: The best individual Xbest

1: iter = 0, Fmin = In f
2: initialize P(iter)
3: while iter ≤ itermax do
4: for each sub-population Pt, Pe and Pl do
5: evaluate fitness F(X) = Ja + Jr + p(X)
6: if F(X)≤ Fmin then
7: record X as the best individual Xbest
8: record Fmin = F(X)
9: end if

10: select the elite of the sub-population
11: flip, swap or slide X r in the elite to construct Pr(iter+1)
12: update the probability matrix Ck(iter) (Ck

t (iter) for Pt, Ck
e(iter) for Pe, and Ck

l (iter) for Pl )
13: for X r ∈ Pr(iter+1) do
14: sample X t according to Ck

t (iter), Ck
e(iter) and Ck

l (iter) respectively, to construct Pt(iter+1)
15: end for
16: end for
17: for s = 1 to Np do
18: if X r,k

s does not correspond to a connected path then
19: repair X r,k

s by Equations (33) and (34)
20: end if
21: if Xs does not satisfy time constraints then
22: adjust X t,k

s by Equation (35)
23: end if
24: end for
25: iter = iter+1
26: end while

where, l1, l2 and l3 are the gene locations; X r,k(l1 : l1 +1) represents the sequence fragment from the l1st position to
the l1 +1st position of the path sequence; D[xr,k

l1
,xr,k

l1+1] represents a path sequence with xr,k
l1

as the start point and xr,k
l1+1

as the end point obtained by using the Dijkstra algorithm.
For Equation (33), if the path sequence fragment from the l1st position to the l1 + 1st position is unconnected,

Dijkstra algorithm is used to generate a connected path to replace it. The repairing operation may cause the path
sequence to contain repeating paths, the further operation of the repeating sequence segment as shown in Equation
(34). If the value of the path sequence at the l2st position coincides with the l3st position, the unnecessary intermediate
path sequence will be deleted.

Then, if X t does not satisfy the time constraints of the FTSN model, T T (i, j,k) in Dimension 2 will be adjusted.
The specific repairing operation is as follows:

xt,k1
l1

= xt,k1
l1

+1, i f xt,k1
l1

= xt,k2
l2

,
l1

∑
l=1

xt,k1
l =

l2

∑
l=1

xt,k2
l (35)

where, l1 and l2 are the gene locations. Equation (35) means that if any two AGVs are in the same position at the same
time, one AGV will be selected, and its encoding time value at that position will add 1 to avoid collisions between
AGVs.

3.2.4. Pseudocode of the algorithm
This part gives the pseudocode of the developed hybrid metaheuristics for the considered MINLP. This pseudocode

is described in Algorithm 1, detailing the flowchart of Fig. 4.
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As discussed earlier, the entire population P is divided into three sub-populations Pt, Pe, and Pl. For each iteration
indexed by iter, a certain ratio (marked by η%) for each sub-population is selected as the elite, marked as P

′
t (iter),

P
′
e(iter), and P

′
l (iter). Then, three mutation operations are performed for the path sequence (X r) in the elite, to

generate new solutions of Dimension 1 and construct Pr(iter + 1), which contains Dimension 1 of all solutions in
the next iteration. Afterwards, for each newly generated solution, update the probability matrix Ck(iter) and sample
the transport time represented in X t to construct Pr(iter+ 1), which corresponds to Dimension 2 for every solution
in population P. When the new population P(iter+ 1) is generated by GA and EDA, perform the repair operations
(detailed in Section 3.2.3) to adjust the unfeasible solutions.

4. Case studies

This section presents the numerical experiment results of the developed hybrid algorithm GA-EDA (HGE) to solve
the MINLP by using the FTSN model. The first part introduces the benchmark of a material transport system and
experiment settings. The second part discusses how the key parameters of HGE are selected. Then, the proposed HGE
algorithm (using the FTSN representation), is compared to the existing methods for addressing the same path planning
problem. We then use an example to show how the energy efficiency is improved by analyzing the determined paths.

4.1. Setting of the AGV transport system

4.1.1. Benchmark
To evaluate the performance of the proposed FTSN model, we consider a material handling benchmark system

used in the manufacturing or warehouse environment. The roadmap is n×n squared graph with different connection
conditions. An example of the roadmap is shown in Fig. 5, adapted from the layout in Nishi et al. (2020).

Figure 5: Example of a roadmap in the industrial application (Scenario I).

This benchmark takes into account the physical features of AGVs, including the dynamical behavior parameters
(such as vehicle speed and weight). The key parameters of the AGV system are listed as follows:

• The total weight of AGV: M = 320kg.

• Gravitational constant: g = 9.81m/s2.

• Maximal speed: vmax = 1m/s.

• Rolling resistance coefficient: Cr = 0.01.

14



4.1.2. Experiment setting
This part sets up case studies to evaluate the proposed methodology in different layout topologies similar to Fig. 5

with different numbers of AGVs. For the conducted experiments, two types of scenarios (small-scale and large-scale)
are considered. The small-scale scenarios use a small n× n (n = 3,4,5) roadmap to show that the proposed HGE
can find the optimal solution. The large-scale scenarios consider a large n× n (n = 10) roadmap with 5 different
connection conditions to show the advantage of the proposed HGE.

For each case, 20 experiments are tested for comparison in general. In each experiment, the pickup point and the
delivery point of a particular task are given randomly in advance. The maximum computation time is set to be 1 hour.
The settings of these case studies are given as follows:

• The pickup point is considered as the initial position of each AGV.

• The material weight to be transported for each task is assumed to be the same.

• All the materials are assumed to be ready at each pickup point.

• The service times of each AGV at the pickup node and the delivery node are ignored.

• The distance S(i, j) is set to be 10m for an indoor inventory system, as suggested by Adamo et al. (2018). The
unit time ∆T is considered to be 10s.

Three key performance indicators (KPIs) are considered to evaluate the benchmark system: 1) Completion time:
the sum of completion times of the transport tasks; 2) Energy consumption: the sum of the kinetic energy of the AGVs
for completing these tasks; 3) Computation time: the time to compute the solution for each planning problem.

The results of the developed FTSN-HGE method are compared with the TSN model, the MINLP solver Baron, and
three standard commonly-used metaheuristics (GA, Particle Swarm Optimization (PSO), and PBIL). The comparison
methods are briefly described as follows:

• The TSN model is a state-of-the-art representation for the conflict-free path planning of multiple AGVs (Nishi
et al., 2005; Murakami, 2020). In the TSN model, the transport time between every two successive nodes in
the roadmap is fixed. Therefore, using the TSN model, a single-objective optimization, which minimizes the
completion time only, is considered. The resulting optimization problem is an MIP solved by Gurobi.

• Baron is regarded as an efficient commercial solver for solving MINLPs. Baron implements a branch and bound
algorithm that utilizes linear programming for the bounding step to solve MINLP problems.

• GA is an efficient metaheuristic for solving MINLPs (Tang et al., 2021). In our MINLP, the standardized GA is
used to generate the path sequence and transport time jointly (Farooq et al., 2021).

• PSO is a typical swarm optimization algorithm for solving the routing problem (Wang et al., 2003). The PSO
is used to determine both the path sequence and transport time.

• PBIL is an efficient EDA for solving the MINLPs (Meng et al., 2016; Wu and Wang, 2018). The standard PBIL
is used to update the path sequence and transport time jointly. Both GA, PSO, and EDA are designed based on
the FTSN framework.

The hardware for all these experiments is an Intel i7-9700 processor (3.0GHz) with 8GB of memory. The opti-
mization problems are modelled and solved in Python. The fitness evaluation times of the four metaheuristics (HGE,
GA, PSO, and PBIL) are set to 10000.

4.2. Parameters selection
There are four key parameters in the designed HGE: P size, η , α and β . We determine these parameters by

the Taguchi method for the design-of-experiment (DOE) (Farooq et al., 2021). A large-scale instance (K = 8) is
considered, and the layout is shown in Fig.5. For each parameter, four-factor levels are selected as shown in Table 2.

Based on these settings, the orthogonal array L16(44) is selected, and 30 experiments are carried out for each
combination of the parameters in L16(44) In these experiments, the number of evaluations is set as 10000, R1 =

15



Table 2: Factor levels of four key parameters of the proposed GEDA.
Parameter 1 2 3 4

P size 50 100 150 200
η(%) 10 20 30 40

α 0.1 0.2 0.3 0.4
β 0.5 0.6 0.7 0.8

Table 3: Orthogonal array and RV values
Number P size η α β RV

1 1 1 1 1 0.104
2 1 2 2 2 0.118
3 1 3 3 3 0.112
4 1 4 4 4 0.096
5 2 1 2 3 0.126
6 2 2 1 4 0.129
7 2 3 4 1 0.129
8 2 4 3 2 0.125
9 3 1 3 4 0.129

10 3 2 4 3 0.125
11 3 3 1 2 0.129
12 3 4 2 1 0.129
13 4 1 4 2 0.125
14 4 2 3 1 0.125
15 4 3 2 4 0.125
16 4 4 1 3 0.121
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Figure 6: Evaluation of key parameters of the proposed HGE on the RV value.

1000,R2 = 10000. The average proportion of energy consumption reduction is taken as the response variable (RV)
value for each combination of these parameters. Table 3 lists the orthogonal array and RV values.

The influence trend curves of parameters are shown in Fig.6. The number of populations P size has the most
significant effect on performance, as P size affects the search depth. For the elite population ratio, a small η may get
insufficient information, while a large η may lead to wrong information in the probability matrix. The learning rate
α affects the algorithm convergence, and the mutation operator β can help to improve the population diversity. Here,
we select P size = 150, η = 20, α = 0.2, β = 0.6 for the following experiments.
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Table 4: Averaged results the small-scale scenarios (K = 2).
Completion time (Unit: seconds)

Scale TSN FTSN
Baron GA PSO PBIL HGE

n = 3 35.00 35.00 35.00 35.00 35.00 35.00
n = 4 55.00 55.00 55.00 55.00 55.00 55.00
n = 5 58.00 58.00 58.00 58.00 58.00 58.00

Energy consumption (Unit: Joule)

Scale TSN FTSN
Baron GA PSO PBIL HGE

n = 3 321.10 321.10 321.10 321.10 321.10 321.10
n = 4 361.86 341.73 341.73 341.73 341.73 341.73
n = 5 375.37 345.89 345.89 345.89 345.89 345.89

Computation time (Unit: seconds)

Scale TSN FTSN
Baron GA PSO PBIL HGE

n = 3 1.18 34.05 6.83 5.13 1.65 2.61
n = 4 1.92 245.52 9.35 4.98 3.36 3.52
n = 5 2.73 484.93 16.21 15.23 8.75 4.96

4.3. Results and discussion

4.3.1. Results on small-scale cases
In this subsection, the experimental results on the small-scale scenarios with 2 AGVs are presented by using the

six different methods. The compared results with respect to the given KPIs (completion time, energy consumption,
and computation time) are reported in Table 4. The proposed HGE algorithm is compared to the TSN method, the
MINLP solver Baron, GA, PSO, and PBIL. The proposed HGE, Baron, GA, PSO, and PBIL are based on the FTSN
model. Three small-scale scenarios are tested by using the n×n roadmap layout (n = 3,4,5). We note that for these
small-scale scenarios, the MINLP solver Baron returns the optimal solution for all these scenarios, and the optimality
of each solution is thus guaranteed by the Gurobi solver.

Table 4 shows that the FTSN model achieves the same completion time as the one computed by the TSN method,
which minimizes the completion time only. This means that the proposed HGE algorithm obtains the minimum
completion time. Regarding the energy consumption, the FTSN model uses less energy consumption than the TSN
method for the scenarios (n = 4,5); the proposed HGE algorithm computes the same value when compared to the
other four methods (Baron, GA, PSO, and PBIL). For the small-scale scenarios, we conclude that the proposed HGE
algorithm uses the minimum energy consumption for the minimum completion time.

It is shown in Table 4 that the computation time of these methods is quite different. Since the computational
complexity of the MINLP is higher than the one of MIP provided by the TSN model, the computation time of the
Baron solver is greatly larger than the one of the TSN method. The four metaheuristics (HGE, GA, PSO, and PBIL)
compute their solutions within a considerable shorter computation time than the MINLP solver Baron.

4.3.2. Results on large-scale cases
This subsection compares the performance on large-scale scenarios regarding the six methods based on the TSN

model and the proposed FTSN model. The computational results are given in Tables 5, 6, and 7. The five roman
letters represent the five 10×10 squared roadmaps with different connection conditions.

Table 5 reports the average completion time for the large-scale scenarios. When compared to the other methods,
the proposed HGE and PBIL have the shortest completion time for each scenario. The completion times determined
by HGE and PBIL are slightly shorter than those determined by TSN. In certain scenario settings, FTSN may achieve
a shorter completion time than TSN because FTSN uses flexible transport time rather than fixed transport time. Due
to the lack of search capability when solving the non-convex MINLP, GA and PSO have slower completion times than
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Table 5: Average completion times for large-scale scenarios by using the five methods. (Unit: Seconds)

Settings TSN FTSN
Baron GA PSO PBIL HGE

I
K = 8 662.50 -- 662.50 662.50 662.50 662.50
K = 9 660.50 -- 660.50 660.50 660.50 660.50
K = 10 735.00 -- 740.00 741.00 735.00 735.00

II
K = 8 629.50 -- 629.50 629.50 629.00 629.00
K = 9 660.00 -- 661.50 661.50 660.00 660.00
K = 10 746.00 -- 747.00 746.50 746.00 746.00

III
K = 8 657.50 -- 657.50 657.50 657.50 657.50
K = 9 751.00 -- 751.00 751.00 750.50 750.50
K = 10 754.00 -- 754.00 754.00 754.00 754.00

IV
K = 8 637.00 -- 636.50 636.50 636.50 636.50
K = 9 707.00 -- 710.00 708.00 707.00 707.00
K = 10 820.00 -- 820.00 820.00 820.00 820.00

V
K = 8 583.00 -- 583.00 583.00 583.00 583.00
K = 9 682.50 -- 682.50 682.50 682.50 682.50
K = 10 774.00 -- 774.00 774.00 774.00 774.00
Average 697.30 -- 697.97 697.87 697.20 697.20

Table 6: Average energy consumption for large-scale scenarios by using the five methods. (Unit: Joule)

Settings TSN FTSN
Baron GA Gap(%) PSO Gap(%) PBIL Gap(%) HGE Gap(%)

K = 8 1500.17 -- 1385.96 7.61 1381.51 7.91 1367.28 8.86 1311.29 9.98
I K = 9 1638.04 -- 1502.65 8.27 1486.72 9.24 1509.40 7.85 1480.23 9.63

K = 10 1782.67 -- 1692.16 5.08 1713.55 3.88 1676.46 5.98 1610.67 9.99
K = 8 1475.34 -- 1370.68 7.09 1342.09 9.03 1330.45 9.82 1311.31 11.12

II K = 9 1652.20 -- 1497.24 9.38 1481.30 10.34 1508.20 8.72 1477.09 10.60
K = 10 1866.02 -- 1775.12 4.82 1756.98 5.84 1732.96 6.27 1674.02 10.29
K = 8 1500.15 -- 1395.10 7.00 1399.10 6.74 1366.15 8.93 1330.15 11.33

III K = 9 1663.12 -- 1592.85 4.23 1575.11 5.29 1530.20 7.99 1487.12 10.58
K = 10 1815.23 -- 1705.23 6.06 1688.93 6.96 1722.05 7.61 1635.45 9.92
K = 8 1539.35 -- 1418.62 7.84 1396.25 9.30 1371.35 10.91 1347.35 12.47

IV K = 9 1701.58 -- 1587.12 6.73 1549.26 8.95 1504.69 11.57 1479.58 13.05
K = 10 1833.18 -- 1741.60 5.00 1763.27 3.81 1742.15 5.83 1661.10 9.38
K = 8 1481.80 -- 1374.31 7.25 1348.48 9.00 1356.71 9.98 1303.80 12.01

V K = 9 1692.84 -- 1624.28 4.05 1617.55 4.64 1557.96 7.97 1466.81 13.35
K = 10 1831.76 -- 1753.44 4.28 1738.69 5.08 1719.26 6.93 1647.70 10.05
Average 1664.90 -- 1561.09 6.23 1561.09 7.07 1553.02 8.00 1481.58 11.01

TSN. Due to the computational complexity of the studied MINLP, the MINLP solver Baron cannot obtain a solution
within the maximum computation time, as shown in Table 5 .

The energy consumption, which is our research focus, is shown in Table 6. The four metaheuristics (HGE, GA,
PSO, and PBIL) reduce the energy consumption compared to the TSN method, which minimizes the completion time
only. The proposed HGE obtains the lowest energy consumption for each scenario, when compared to GA, PSO, and
PBIL. On average, the proposed HGE reduces the energy consumption by 11%, which is more than GA (6.23%), PSO
(7.07%), and PBIL (8.00%). Analyzing the results in Table 6, the energy-saving effect for K = 10 may be worse than
for K = 8 and K = 9. The reason could be that the running paths of AGVs are more complex when more AGVs are
considered for the same roadmap.

Table 7 gives the computation times for the six methods in the large-scale scenarios. The TSN method solves the
MIP, while the FTSN methods (Baron, GA, PSO, PBIL, and the proposed HGE) solve a more complicated MINLP,
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Table 7: Average computation time for large-scale scenarios by using the five methods. (Unit: Seconds)

Settings TSN FTSN
Baron GA PSO PBIL HGE

I
K = 8 3.07 3600 101.76 89.45 70.50 36.96
K = 9 3.96 3600 117.33 120.42 75.83 28.91
K = 10 4.36 3600 129.49 127.56 83.32 28.91

II
K = 8 4.10 3600 101.92 69.68 67.33 40.52
K = 9 4.68 3600 117.39 112.14 78.89 38.48
K = 10 5.58 3600 132.27 145.36 94.41 46.17

III
K = 8 3.80 3600 96.45 103.55 68.63 35.73
K = 9 4.98 3600 118.44 121.66 87.76 38.29
K = 10 4.14 3600 116.00 126.50 88.75 36.75

IV
K = 8 4.79 3600 92.37 73.28 65.95 34.98
K = 9 4.98 3600 116.20 105.67 83.56 37.77
K = 10 5.33 3600 125.46 119.13 93.94 40.56

V
K = 8 3.94 3600 95.79 89.32 63.55 35.52
K = 9 4.38 3600 123.47 130.65 83.21 38.78
K = 10 4.41 3600 128.22 132.71 90.06 42.36
Average 4.43 3600 114.17 111.13 79.71 39.38

including nonlinear constrains and more decision variables than the MIP. This explains why the TSN uses much less
computation time than the FTSN methods. As for the FTNS methods, the proposed HGE is the most computational-
efficient metaheuristic, since HGE makes full use of GA to search the best path sequences, while PBIL is adopted to
search the best transport time. GA, PSO, and PBIL take longer computational times than the proposed HGE, and this
may be due to the required repair operations in case of a large number of infeasible solutions.

Fig. 7 gives the fitness curves for the three metaheuristics (GA, PSO, PBIL, and our HGE) based on the FTSN
modeling framework for Scenario I (K = 8), to show the computation efficiency of the proposed HGE. Fig. 7 shows
that the proposed HGE converges faster than GA, PSO, and PBIL, i.e., HGE explores the solution space more effi-
ciently for the considered MINLP. Fig. 7 also shows that HGE achieves the best convergence accuracy, because the
converged fitness of HGE is lower than GA, PSO, and PBIL.

Figure 7: Fitness curves by using different metaheuristics for Scenario I (K = 8).

From the above results of the small-scale and large-scale scenarios, the proposed HGE shows the positive potential
to minimize the energy consumption for the minimal completion time. The studied MINLP problem, which is based
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on the FTSN model, is difficult to be solved for the large-scale scenarios in practice.
The proposed HGE shows its advantage over the existing metaheuristics (GA, PSO, and PBIL) to solve the MINLP.

HGE achieves the same minimal completion time as the one obtained by the TSN method, both for the small-scale
and large-scale scenarios. For the small-scale scenarios, HGE computes the same minimal energy consumption as the
one computed by the MINLP solver Baron. For the large-scale scenarios, HGE is the most energy efficient (minimum
completion time and minimal energy consumption), compared to GA, PSO, and PBIL.

4.4. Example of planned paths

This part demonstrates the planned energy-efficient paths determined when using the proposed HGE using the
FTSN model. A simple warehouse layout with five AGVs (K = 5) is provided. The mesh topological roadmap for
this case is shown in Fig. 8.

Figure 8: Roadmap for one example with K = 5.

For the roadmap in Fig. 8, the setting of this roadmap is same as section 4.1.2. In Fig. 8, five AGVs start their
tasks simultaneously at time 0. The AGV tasks have been assigned in advance: O = {1,2,3,5,7}, S = {2,14,9,8,13}.
The detailed results are obtained by Gurobi by using the TSN model and the proposed HGE obtained by the FTSN
model, as shown in Fig. 9.
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(a) Planned Paths by the TSN
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(b) Planned Paths by the FTSN

Figure 9: Path results of one example of the case K = 5.

Fig. 9 (a) presents the planned paths of the AGVs by using the TSN model. Fig. 9 (a) shows that the five AGVs
successfully move from their pickup points to delivery points. The sum of the completion times is 22. The conflicts
between these AGVs are avoided because every node and every arc are not occupied by more than one AGV at any
time. The TSN model considers a fixed transport time between every two connected nodes and each AGV has to
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wait at a certain node to avoid the collision. It can be seen that AGV 1 and AGV 4 stop at Node 1 and Node 5,
respectively, within the first time slot, while AGV 5 stops at Node 15 within the fourth time slot, to avoid collision
with other AGVs. AGV 2 and AGV 4 move through Node 6 at t = 1 and t = 2, respectively, since Node 6 is crowded.
Furthermore, to avoid conflict with AGV 1 and AGV 3, AGV 5 moves via the path 7-8-11-15-14-13 to shorten its
completion time, instead of the shortest path 7-6-10-13 without considering conflicts.

Fig. 9 (b) gives the planned paths of the proposed FTSN-HGE. The sum of the completion time of the FTSN-HGE
method is 20, which is shorter than the one using the TSN model. As the proposed FTSN model allows AGVs to move
at a flexible speed (which can be lower than the maximum speed), AGVs no longer wait at the nodes unnecessarily to
avoid conflict. AGV 5 can choose its shortest path, and the rolling resistance energy Jr can be saved for the shortest
path that lowers energy consumption. The energy reduction strategy also applies to the other AGVs, as AGV 4 moves
at one-third of the maximum speed from Node 5 to Node 6.
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Figure 10: Planned speeds of one example of the case K = 5.

Fig. 10 shows the detailed planned speeds of the AGVs when using the TSN and FTSN models. For the TSN
model, AGV5 stops between t = 3 to t = 4. Therefore, AGV 5 needs to fully accelerate to its maximum speed
twice. When the FTSN model is considered, AGV 5 only accelerates once by regulating the speed, and the energy
consumption is thus considerably saved (by reducing the number of accelerations and decelerations).

5. Conclusions and future research

This paper investigates a new energy-efficient path planning problem of multiple AGVs, which plays a crucial
role for material handling in the modern production and logistics systems. In this research, the conflict-free path and
the vehicle speed are optimized jointly, using a so-called FTSN modeling framework, in order to save kinetic energy
consumption without decreasing the quality of the transport productivity. Due to the nonlinearity resulting from
modeling the energy-related objective and constraints, the corresponding problem is a non-convex mixed-integer
nonlinear programming. To address its computational issue, we develop a dedicated hybrid metaheuristic HGE,
in which new encoding schemes and algorithm procedures considers the characteristics of the planning problem.
Numerical experiments have been conducted on industrial scenarios. Experiment results indicate that about 10% of
the kinetic energy is reduced by using the proposed method against the conventional TSN model, without deteriorating
the completion time. Experimental results show the advantage of the proposed hybrid metaheuristic compared to the
genetic algorithm, the population-based incremental learning, and a commercial MINLP solver.

The proposed FTSN-HGE method shows its potential to reduce the energy use of material handling without de-
creasing productivity by the lexicographic strategy, which optimizes the path sequence and the vehicle speed jointly.
The unnecessary vehicle waiting times resulting from preventing conflicts can be used for regulating vehicle speed.
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The number of accelerations and decelerations can be reduced for saving the energy consumption of material trans-
port. The proposed planning method is environmentally friendly, and this method provides a guiding significance
for promoting cleaner production of flexible manufacturing systems and smart logistics systems. The producers will
save the operations costs resulting from the reduced energy consumption, without deteriorating the service of high
productivity.

The energy consumption reduction requires more detailed coordination of the AGVs to regulate the speed and
the path jointly in the production environment, taking into account the vehicle accelerations/decelerations and rolling
resistances. To implement such an energy-efficient planner for AGV-based manufacturing systems, a designed speed
controller is needed for each AGV to track the speed changes during the transport process.

Future research will investigate an extended path planning problem in which multiple tasks are considered for
each AGV. In this case, it is interesting to study whether task assignment influences saving the energy consumption,
and new optimization algorithms are needed to be developed to solve this extended problem.
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Appendix .1. Solution initialization

The probability matrices Ct, Ce and Cl are initialized as follows:

Ck
t (1) =


1 0 · · · 0
...

...
...

1 0 · · · 0
...

...
...

1 0 · · · 0

 (.1)

Ck
e(1) =


0 1 · · · 0
...

...
...

0 1 · · · 0
...

...
...

0 1 · · · 0

 (.2)

Ck
l (1) =



1/h 1/h · · · 1/h
...

...
...

1/h 1/h
. . . 1/h

...
...

...
1/h 1/h · · · 1/h


(.3)

For the sub-population Pt, AGVs travel at the highest speed to shorten the total completion time firstly, so the
probability matrix Ck

t is initialized as Equation (.1). While for the sub-population Pe, AGVs are operated at a lower
speed to reduce energy consumption, then the probability matrix Ck

e is initialized as Equation (.2). The probability
matrix Ck

l of the sub-population Pl is initialized as Equation (.3), and the probability values of each time slot are the
same (1/h).
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Pérez-Cañedo, B., Concepción-Morales, E., 2020. A lexicographic approach to fuzzy linear assignment problems with different types of fuzzy

numbers. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 28, 421–441.
Riazi, S., Bengtsson, K., Lennartson, B., 2020. Energy optimization of large-scale agv systems. IEEE Transactions on automation science and

engineering 18, 638–649.
Ryck, M., Versteyhe, M., Debrouwere, F., 2020. Automated guided vehicle systems, state-of-the-art control algorithms and techniques. Journal of

Manufacturing Systems 54, 152–173.
Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., Mahmoodian, V., 2015. An ant colony algorithm (aca) for solving the new integrated

model of job shop scheduling and conflict-free routing of agvs. Computers & Industrial Engineering 86, 2–13.
Tang, L., D’Ariano, A., Xu, X., Li, Y., Ding, X., Samà, M., 2021. Scheduling local and express trains in suburban rail transit lines: Mixed–integer

nonlinear programming and adaptive genetic algorithm. Computers & Operations Research 135, 105436.
Wang, K.P., Huang, L., Zhou, C.G., Pang, W., 2003. Particle swarm optimization for traveling salesman problem, in: Proceedings of the 2003

international conference on machine learning and cybernetics, Xi’an, China. pp. 1583–1585.
Wu, C.g., Wang, L., 2018. A multi-model estimation of distribution algorithm for energy efficient scheduling under cloud computing system.

Journal of parallel and distributed computing 117, 63–72.
Xin, J., Negenborn, R., Corman, F., Lodewijks, G., 2015a. Control of interacting machines in automated container terminals using a sequential

planning approach for collision avoidance. Transportation Research Part C: Emerging Technologies 60, 377–396.
Xin, J., Negenborn, R., Lodewijks, G., 2015b. Event-driven receding horizon control for energy-efficient container handling. Control Engineering

Practice 39, 45–55.

23



Xin, J., Negenborn, R.R., Lodewijks, G., 2014. Energy-aware control for automated container terminals using integrated flow shop scheduling and
optimal control. Transportation Research Part C: Emerging Technologies 44, 214–230.

Yi, G., Feng, Z., Mei, T., Li, P., Jin, W., Chen, S., 2019. Multi-agvs path planning based on improved ant colony algorithm. Journal of supercom-
puting 75, 5898–5913.

Yin, S., Xin, J., 2019. Path planning of multiple agvs using a time-space network model, in: 2019 34rd Youth Academic Annual Conference of
Chinese Association of Automation (YAC), pp. 73–78.

Yoshitake, H., Kamoshida, R., Nagashima, Y., 2019. New automated guided vehicle system using real-time holonic scheduling for warehouse
picking. IEEE Robotics and Automation Letters 4, 1045–1052.

Young, C.T., Zheng, Y., Yeh, C.W., Jang, S.S., 2007. Information-guided genetic algorithm approach to the solution of minlp problems. Industrial
& engineering chemistry research 46, 1527–1537.

Young, K., Wang, C., Le, Y.W., Kai, S., 2013. Electric Vehicle Battery Technologies. Springer New York.
Yue, L., Fan, H., Ma, M., 2021. Optimizing configuration and scheduling of double 40 ft dual-trolley quay cranes and agvs for improving container

terminal services. Journal of Cleaner Production 292, 126019.
Zhang, Y., Peng, Q., Yao, Y., Zhang, X., Zhou, X., 2019. Solving cyclic train timetabling problem through model reformulation: Extended

time-space network construct and alternating direction method of multipliers methods. Transportation Research Part B: Methodological 128,
344–379.

Zou, W.Q., Pan, Q.K., Meng, T., Gao, L., Wang, Y.L., 2020. An effective discrete artificial bee colony algorithm for multi-agvs dispatching problem
in a matrix manufacturing workshop. Expert Systems with Applications 161, 113675.

24


