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Abstract— This paper investigates a novel routing problem of1

a multi-robot station in a manufacturing cell. In the existing2

literature, the objective is to minimize the cycle time or energy3

consumption separately. The routing problem considered in this4

paper aims to reduce the cycle time and energy consumption5

jointly for each robot while avoiding collisions between these6

robots. For this routing problem, we propose a new flexible7

time-space network model that allows us to reduce energy8

consumption while minimizing the cycle time. The corresponding9

optimization problem is Mixed-Integer Nonlinear Programming10

(MINLP). For addressing its computational complexity, this11

paper designs a metaheuristic algorithm tailored to the studied12

problem and proposes an ε-constraint algorithm to study the13

trade-off between these two objectives. We conduct industrially14

relevant simulation experiments of case studies to show its15

effectiveness, in comparison to a conventional method, two state-16

of-the-art solvers, and two commonly-used metaheuristics. The17

results show that the proposed methodology can reduce energy18

consumption by up to 30% without compromising the cycle time.19

Meanwhile, the proposed algorithm can provide efficient solutions20

within a reasonable computation time.21

Note to Practitioners—This paper is motivated by the problem22

of improving energy efficiency when routing cooperative robots23

in a manufacturing station. In current approaches for routing24

multi-robot stations, the cycle time and energy consumption are25

minimized separately. This paper focuses on the movement of26

the robot end-effector and its connected joint and suggests a new27

approach to minimize these two objectives jointly by proposing a28

new mathematical model. The resulting planning problem is com-29

putationally intractable. A customized metaheuristic algorithm30

is thus designed for efficiently solving this planning problem.31
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Our meta-heuristic algorithm is integrated with the ε-constraint 32

method to study the relationship between these two objectives. 33

Simulation experiments suggest that this approach can reduce 34

energy consumption considerably, for the shortest cycle time, 35

compared with the current approaches. In future research, the 36

movements of multi-joints will be investigated whereby 3-D 37

collision-free trajectory planning will be considered.
38

Index Terms— Multi-robot systems, routing, flexible time-space 39

network model, energy consumption, collision avoidance. 40

I. INTRODUCTION 41

ROBOTS considerably improve the productivity of manu- 42

facturing systems. In the production lines, a large number 43

of industrial machines are operated collaboratively to perform 44

various tasks [1], [2]. Typically, a robotic assembly line con- 45

sists of several stations that are arranged serially or in parallel 46

to reach production objectives [3]. At each station, multiple 47

robots, often sharing the same workspace, work together to 48

carry out complex operations (e.g., stud, welding, or sealing) 49

within a predetermined period [4]. 50

For a robotic manufacturing station, the primary goal is to 51

minimize the cycle time. The cycle time (identical to the term 52

makespan used in operations research) is a manufacturing indi- 53

cator, indicating the total time from the start to the end of all 54

the processes in the workstation. Producers aim to maximize 55

the production rates to meet the increasing requirements made 56

by customers. High production rates result from optimizing the 57

intertwined operations of multiple robots within each station. 58

Besides the cycle time, producers regard energy con- 59

sumption as another crucial objective to minimize [5]–[7]. 60

As pointed out in [8], [9], a significant amount of energy is 61

consumed by industrial robots in the manufacturing process, 62

which is about 8 % of the total electrical energy consumed 63

in production processes. Due to the existing strict policy 64

guideline regarding CO2 emissions and the rising energy 65

price [9], reducing the robot energy consumption is a necessity. 66

To maximize the profit, the producers expect to reduce robot 67

energy consumption without deteriorating the service of high 68

productivity, aiming for energy-efficient productions. 69

Motivated by the practical demand of improving energy 70

efficiency when routing the cooperative robots in a manufac- 71

turing station, we investigate a new energy-efficient routing 72

problem. In this problem, minimizing the cycle time and 73

minimizing energy consumption are considered jointly. The 74

corresponding optimization problem is not computationally 75
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tractable for practice-size scenarios, and an efficient algorithm76

will be developed to reduce its computational complexity.77

A. Related Work78

Related research on the planning of manufacturing cells79

has received increasing attention due to the development of80

‘Industry 4.0’. Here, two types of planning problems are81

generally identified: task allocation and routing problems.82

As for a manufacturing system, the task allocation focuses83

on optimally distributing tasks to the available robots [10].84

In [11], an intersection-free geometrical partitioning method is85

developed for the allocation of assembly tasks in a multi-robot86

cell. For improving the efficiency of multi-robot cells, the87

task allocation can also be introduced with the layout design88

simultaneously [12]. At the same time, the task allocation89

may need to be realized in a distributed way, because of the90

communication constraints and limitations [13].91

In the routing problems, task orders and the routes of each92

robot need to be determined for executing different tasks93

in the robotic cell. For a high production rate, the main94

objective is to minimize the cycle time of all the robots, while95

satisfying the collision-free constraints for each robot. The96

integrated collision-free routing and scheduling problem of a97

multi-robot station was first studied in [4] using an iterative98

approach. Later, the task sequence and collision avoidance99

are considered simultaneously (in one framework) using a100

Time-Space Network (TSN) model, and the routing problem is101

regarded as a particular multiple Traveling Salesman Problem102

(mTSP) [14]. In these specific routing problems, the task is103

defined as a discrete action to perform a stud or welding104

operations by the manipulators.105

Besides minimizing the cycle time, the minimization of106

energy consumption has recently received increasing atten-107

tion when planning the routes in robotic cells. In [15],108

[16], the energy-aware scheduling of a single manufacturing109

robot has been studied to obtain the relation between the110

adjustable motion parameters and the energy consumption.111

Bukata et al. [8], [17] investigate the energy consumption112

problem by considering the robotic cell as a whole, proposing113

a parallel hybrid heuristic algorithm [8] and an exact parallel114

algorithm [17] to minimize the energy consumption following115

the desired cycle time which is not optimized. Furthermore,116

a cyclic multi-robot coordination problem of a press line117

is studied, and the energy consumption is minimized by118

smoothing the robot trajectories for the predefined paths [18].119

The above research contributes to improving the efficiency120

of robotic manufacturing cells. The objectives of existing121

literature, however, aim at optimizing either the cycle time or122

the energy consumption individually. None of them considers123

minimizing these two objectives jointly.124

B. Contributions125

In this paper, we focus on minimizing the cycle time and126

energy consumption jointly for a robotic station, and this topic127

has not been carefully studied in the literature. The energy128

consumption here refers to the total amount of kinetic energy129

consumed by all robots to complete their tasks. The energy130

consumption is expected to be reduced, while maintaining 131

a high production rate, thus meeting not only economic but 132

also environmental criteria. To reach this simultaneous goal, 133

we make the following contributions: 134

• We propose a new time-space network model for 135

the energy-aware and collision-free routing problem of 136

the multi-robot station. The proposed time-space net- 137

work representation allows representing the motion time 138

between successive tasks and task sequence as decision 139

variables, resulting in a so-called Flexible Time-Space 140

Network (FTSN) model to reduce energy consumption 141

when performing the given tasks in the multi-robot sta- 142

tion in a collision-free way. Existing TSN models of 143

routing the multi-robot station regard the motion time 144

as fixed parameters and energy consumption cannot be 145

reduced [14]. Weighted-sum and lexicographic formula- 146

tions are considered for determining the energy-efficient 147

and collision-free route. Due to its nonlinear constraints 148

and objective functions for minimizing energy consump- 149

tion, a Mixed-Integer Nonlinear Programming (MINLP) 150

problem remains to be solved. 151

• A customized metaheuristic algorithm is developed to 152

efficiently solve the resulting MINLP problem based on 153

the FTSN representation. For the studied MINLP, new 154

two-dimensional encoding schemes and operators are 155

proposed to deal with the mixed decision variables for 156

tasks sequences and flexible motion times in a collision- 157

free way. For the existing metaheuristic to solve the robot 158

routing problem, the encoding scheme is typically lim- 159

ited to the one-dimension for sequence planning without 160

avoiding collisions [19], [20]. Based on the customized 161

metaheuristic, we further use the ε-constraint method to 162

study the relationship between these two objectives. 163

As this paper builds on previous work such as [14], which 164

addresses the cycle time minimization problem to decide the 165

collision-free routes of a multi-robot station, it makes clearly 166

different contributions. In [14], the motion times between 167

every two successive tasks are regarded as fixed parameters. 168

Thus, energy consumption concerning robot movements can- 169

not be directly optimized. There, the optimization problem 170

is formulated as Mixed-Integer Programming (MIP). In this 171

work, an MINLP is proposed and solved due to nonlin- 172

ear energy-related objectives and constraints. The resulting 173

MINLP is more challenging to be solved than the MIP. 174

The remainder of this paper is organized as follows: 175

Section II presents the mathematical formulation of the pro- 176

posed FTSN model, for the considered energy-aware and 177

collision-free routing problem. In Section III, a customized 178

metaheuristic algorithm is designed to solve the corresponding 179

MINLP problem. Section IV discusses and analyzes the simu- 180

lation results carried out for industrial case studies. Section V 181

concludes this paper and provides potential future research. 182

II. FLEXIBLE TIME-SPACE NETWORK MODEL 183

This section defines the considered problem of 184

energy-efficient and collision-free routing of the multi-robot 185

station and introduces the corresponding flexible time-space 186

network formulation. 187
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Fig. 1. Robotic assembly stations in the production line (demonstrated in
software RobotStudio).

A. Problem Definition188

At multi-robot stations of manufacturing systems, multiple189

robots are operated in a shared workspace to fulfill tasks that190

often require cooperation between the robots. Such settings191

can, for instance, be found in the automobile industry that uses192

cooperative robots in stud-welding or spot-welding, as illus-193

trated in Fig. 1. For planning the collaborative motions of194

these robots, specific objectives and constraints need to be195

considered. A minimum cycle time is desired for maximizing196

productivity, but operating the robots at maximum speed197

may result in overly high energy consumption that stands in198

conflict with the economic and environmental policies of many199

operators. Moreover, since the robots share the workspace,200

collision avoidance must be granted.201

Following the assumptions made in [14], the subsequent202

assumptions are made for the specific problem under consid-203

eration:204

• All robots start from their idle positions.205

• All robots are identical.206

• A subset of tasks has been assigned to each robot in207

advance, but the task sequence for each robot needs to be208

decided. The task allocation can be obtained by solving a209

classification problem based on the position distribution210

of the nodes.211

• Each task can be performed by one robot only. Each robot212

starts the next task after completing the current one.213

• The workspace of the robots is considered in the same214

plane, and the tool center point is regarded as the refer-215

ence point of each robot.216

• The problem considers the operation of the end effector217

and its connected joint, disregarding the state of other218

joints. For this assumption, each robot could use the219

kinematic redundancy of the manipulator to obtain more220

degrees of freedom and resolve the conflict between221

different operation points which are nearby.222

B. Flexible TSN Model223

In the existing TSN model of the multi-robot routing prob-224

lem [14], the motion time is considered as a fixed parameter,225

thus energy consumption cannot be further minimized. For226

achieving the energy-aware and collision-free routes of the227

multi-robot station, a flexible time-space network model that228

TABLE I

NOMENCLATURE

considers flexible motion times is proposed. This model has 229

a nonlinear objective and adopts location constraints and time 230

constraints. 231

We assume that, for m robots, robot k (k ∈ {1, 2, .., m}) 232

owns Nk tasks. In total, m directed graphs Gk = (Vk, Ek) 233

(k ∈ {1, 2, .., m}) are considered. For robot k, Vk (Vk = 234

{uk
1, uk

2, . . . , uk
Nk

}) is the collection of nodes and Ek = 235

{(i, j)|i ∈ Vk, j ∈ Vk} is the collection of arcs. 236

Each task is defined as executing a single operation (i.e., 237

stud-welding and spot-welding) at a particular location. As a 238

result, a specific node i corresponds to a place for the robot 239

to perform a task. Arc (i, j) maps to the path from task i to 240

task j . Nodes represent different locations for the robot to be 241

visited by the robot. 242

We consider a planning horizon T ×�t equally discretized 243

into a set of short time slots denoted by {�t, 2�t, . . . , T ×�t}. 244

One time slot is given as �t , and T is the total number of 245

time slots. As a result, the TSN model can decompose the 246

overall routing process of multiple robots into several time 247

slots. At each time instant t ∈ {0, 1, .., T }, each robot can 248

visit a particular node. Before detailing the proposed FTSN 249

model, the used subscripts, parameters, and decision variables 250

are introduced in Tables I and II. 251

For the flexible motion process of robot k on arc (i, j), the 252

position update from t − 1 to t is given as follows: 253

xkt = xk(t−1) +
∑

i, j :(i, j∈Ek)

(ui jk(t−1) × x j − xi

ti jk
), ∀k (1) 254

ykt = yk(t−1) +
∑

i, j :(i, j∈Ek)

(ui jk(t−1) × y j − yi

ti jk
), ∀k (2) 255

where ti jk is a decision variable, and the motion time on arc 256

(i, j) can be optimized. It is noted that equations (1)-(2) are 257

both nonlinear equalities. In [14], ti jk is regarded as a fixed 258

parameter and the motion time of robot k on arc (i, j) cannot 259

be further changed. Fig. 2 illustrates the discretized motion 260

process on arc (i, j ), and this process depends on ti jk . As ti jk 261

is modified, the number of fictitious points also changes. 262

The time connectivity of robot k for arc (i, j) is modelled 263

based on the cumulative flow variables ai jkt and di jkt . This 264
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Fig. 2. Discretized flexible motion process on arc (i, j) depending on the
decision variable ti jk .

TABLE II

DECISION VARIABLES

connectivity is described by the following constraints:265

ti jk × zi jk =
∑

t

(t × (di jkt − di jk(t−1)))266

−
∑

t

(t × (ai jkt − ai jk(t−1))),267

∀k, (i, j) ∈ Ek (3)268

ai jkt ≥ ai jk(t−1), ∀k, (i, j) ∈ Ek, t (4)269

di jkt ≥ di jk(t−1), ∀k, (i, j) ∈ Ek, t (5)270

ui jkt = ai jkt − di jkt , ∀k, (i, j) ∈ Ek, t (6)271 ∑
i. j :(i, j∈Ek)

ui jkt ≤ 1, ∀k, t (7)272

ti jk ≥ tmin
i j , ∀k, (i, j) ∈ Ek (8)273

where equality (3) is the time constraint for each robot between274

two successive tasks, and each robot can wait for more than275

one time unit in the node. Note that Inequality (3) is a276

nonlinear constraint due to the term zi jk ×ti jk. Inequalities (4)-277

(5) are the time connectivity constraints for robot k to perform278

two successive tasks regarding the arrival and departure for arc279

(i, j). Inequalities (6)-(7) guarantee that each robot can only280

perform one task per time unit. inequality (8) ensures that the281

time spent on arc (i, j) for robot k is no less than the minimum282

time (tmin
i j = 1 if i = j ).283

Additional constraints are needed to map the time and space284

in the same framework as follows:285 ∑
i :(i,hk )∈Ek

dihk kT ≥ 1, ∀k (9)286

∑
j :(hk , j)∈Ek

ahk jkt = 1, ∀k (10)287

zi jk = ai jkT , ∀k, (i, j) ∈ Ek (11)288 ∑
i, j :(i, j)∈Ek

di jkt =
∑

j.n:( j,n)∈Ek

a jnkt ∀k, j ∈ Vk − hk (12)289

di jkt ≤ ai jkt , ∀k, (i, j) ∈ Ek, t (13)290

where inequalities (9)-(10) are time constraints of each robot 291

at the start and the end positions, ensuring that each robot 292

moves from the start of the planning horizon. Constraint (11) 293

is the mapping constraint between the time-space network and 294

the physical routing network. Constraints (12)-(13) guarantee 295

the continuity of the arrival and departure times for robot k 296

when visiting arc (i, j). 297

Furthermore, the constraints for assigning the tasks of each 298

robot are given as follows: 299∑
i, j :(i, j)∈Eo

k (hk )

zi jk ≥ 1, ∀k (14) 300

∑
i :(i, j)∈E s

k( j)

zi jk =
∑

n:( j.n)∈Eo
k ( j)

z jnk, ∀k, j ∈ Vk − hk (15) 301

∑
i, j :(i, j)∈E s

k(hk )

zi jk ≥ 1, ∀k (16) 302

∑
k=1

∑
j=1

zi jk ≥ 1, ∀i (17) 303

zi jk ≤ δik, ∀i, k, (i, j) ∈ Ek (18) 304

z jik ≤ δik, ∀i, k, ( j, i) ∈ Ek (19) 305

where constraints (14)-(16) ensure the task sequence at the 306

start position, intermediate position, and end position of each 307

robot. Constraint (17) guarantees that all tasks are executed. 308

Constraints (18)-(19) ensure that arc (i, j) can only be visited 309

by robot k when task i is assigned to it. 310

The collision-free constraints for any two robots are pro- 311

vided to guarantee that at any time t each robot does not 312

collide with the other robot, as suggested in [21]. These 313

constraints are given as follows: 314

xk1t − xk2 t ≥ R − Mc1
k1k2 t , ∀k1, k2, ∀t (20) 315

xk2t − xk1t ≥ R − Mc2
k1k2 t , ∀k1, k2, ∀t (21) 316

yk1t − yk2 t ≥ R − Mc3
k1k2 t , ∀k1, k2, ∀t (22) 317

yk2t − yk1t ≥ R − Mc4
k1k2 t , ∀k1, k2, ∀t (23) 318

4∑
q=1

cq
k1k2 t ≥ 3, ∀k1, k2, ∀t (24) 319

where (xk1t , yk1 t) and (xk2t , yk2 t) are the coordinates of the 320

end-effectors for robots k1 and k2 at time t . These coordinates 321

are computed using formulas (1)-(2). cq
k1k2 t is the decision 322

variable for avoiding the collisions. cq
k1k2 t = 0 indicates that 323

there is at least R distance between the end-effectors of 324

robots k1 and k2 in the q th direction in the plane, while 325

cq
k1k2 t = 1 means that the related constraint is relaxed. These 326

constraints ensure that the end-effector ranges of any two 327

robots avoid collisions either at a node or at a fictitious point 328

of the arc for each robot, as illustrated in Fig. 3. However, 329

an industrial robot is a 3D entity, and the constraints (20)-(24) 330

cannot fully guarantees the collision avoidance of the whole 331

body and every joint, as we focus on the end-effector and its 332

connected joint. 333

C. Objective Function 334

Here, we give the robot routing problem in the 335

weighted-sum and the lexicographical formulations. These 336
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Fig. 3. Illustration of collision avoidance for the end-effector areas.

formulations optimize the multiple objectives with different337

priorities. For our robot routing problem, we consider two338

objectives: the cycle time (denoted by Fc) and the kinetic339

energy consumption (represented by Fe). To meet the require-340

ment from the manufacturer, minimizing the cycle time is341

prioritized, while minimizing the energy consumption is less342

critical. Fc and Fe are formulated as follows:343

Fc = max{
∑

t

t ×
∑

i :(i,hk )∈E s
k(hk )

[di jkt − di jk(t−1)], ∀k} (25)344

Fe =
∑

k

∑
i. j :(i, j)∈Ek

p1
i j × ti jk + p2

i j + p3
i j × t−1

i jk (26)345

+ p4
i j × t−2

i jk + p5
i j × t−3

i jk .346

Formula (25) gives the cycle time of all robots as defined347

in [14]. Formula (26) represents the energy consumption348

formulation of all the robotic motions required to complete349

the assigned tasks ((i, j) ∈ Ek) at the planning level. Formula350

(26) models the kinetic energy consumption of the robotic351

motion from node i to node j by a non-linear function of the352

travel time ti jk for robot k [22]. This formulation enables the353

integration of the robot energy optimization into scheduling354

these motions. In (26), p1
i j, . . . , p5

i j represent five constant355

parameters related to kinetic energy from node i to node j .356

The details of formula (26) are well explained in [22].357

First, we use the weighted-sum formulation, in which Fc358

and Fe are represented via a linear combination and optimized359

simultaneously. The corresponding overall optimization prob-360

lem, defined as P1, is described as follows:361

P1 : min(Fc + λFe)362

s.t. (1) − (24),363

where λ is the weighting factor and its unit is normalized.364

Note that Fe is a nonlinear function according to (26),365

and constraints (1), (2), and (3) are also nonlinear. When366

simultaneously optimizing the cycle time and the kinetic367

energy consumption, the decision variables listed in Table II368

are binary or integer. Therefore, an MINLP model is needed.369

Now we prove that P1 is a non-convex MINLP.370

Remark 1: The optimization problem P1 is a non-convex371

nonlinear optimization problem.372

Proof: It is easy to prove that ti jk zi jk in constraint (3)373

is a nonlinear function, since ti jk and zi jk are both decision374

variables.375

The Hessian matrix of ti jkzi jk is computed as

[
0 1
1 0

]
, and376

its determinant is negative. Therefore, the function ti jk zi jk is377

a non-convex function.378

Considering ti jkzi jk is independent to ai jkt and di jkt , con- 379

straint (3) is a nonlinear and non-convex constraint. 380

The MINLP problem P1 has at least one non-convex con- 381

straint. Thus we conclude that P1 is a non-convex MINLP. 382

� 383

In addition to the weighted-sum strategy, we also consider 384

the lexicographical strategy, in which the cycle time Fc is 385

regarded as the primary objective while the energy consump- 386

tion Fe is regarded as the secondary objective. The lexico- 387

graphical formulation of our optimization problem, denoted 388

as P2, is given as follows: 389

P2 : min Fe 390

s.t. Fc ≤ F∗
c , and (1)-(24), 391

where F∗
c denotes the minimal cycle time subject to constraints 392

(1)-(24). Similar to Remark 1, the problem P2 can be proved 393

to be a non-convex MINLP. 394

In general, non-convex MINLPs are more difficult to solve 395

than the MIP which owns linear constraints and objectives. 396

In the next section, efficient algorithms are developed to 397

solve the formulated MINLPs (P1 and P2), thus obtaining 398

collision-free and energy-efficient routes for multiple robots. 399

III. SOLUTION ALGORITHM 400

In this section, we design a customized Genetic Algo- 401

rithm (GA) to efficiently solve the MINLP problems for- 402

mulated in Section II. MINLP problems are known to be 403

NP-hard [23], and commercial MINLP solvers, like BARON, 404

cannot provide high-quality solutions in a reasonable compu- 405

tation time. Therefore, an efficient algorithm is demanded to 406

solve the formulated MINLP problems based on the FTSN 407

formulation. 408

GAs have been proved to be useful for successfully 409

solving complex combinatorial problems (such as MIP and 410

MINLP) [24]–[28]. GA has a relatively simple algorithmic 411

structure, but this metaheuristic has a good ability to diversify 412

the search in the feasible region of the search space [29]. Our 413

studied routing problem is a variant of the multiple Traveling 414

Salesman Problem (mTSP), and the GA is efficient for solving 415

such a problem [30]. Here, for addressing the MINLP in 416

this paper, we design new encoding schemes and operators, 417

allowing the customized GA to be suitable for dealing with the 418

considered MINLP problems. Based on the customized GA, 419

we design an ε-constraint method to study the relationship 420

between the two objectives. 421

A. Encoding 422

In our GA, the encoding for the population (the set of 423

candidate solutions) needs to be initialized. The encoding 424

scheme for each solution is highly relevant to the solution 425

quality. For the routing problem of the multi-robot station, 426

the encoding scheme of existing GAs is designed for the 427

solution to MIPs only [14], and this scheme cannot be used for 428

MINLPs. In this part, we develop a new encoding scheme for 429

constructing the solutions suitable for the considered MINLP. 430
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Fig. 4. Illustration of composing the two dimensional Xs,k for robot k.

Given m robots and a task set Vk for robot k (k ∈431

{1, 2, ..m}). V = V1 ∪ V2 . . . ∪ Vm is the set of all tasks. For432

robot k, the set Vk = {uk
1, uk

2, . . . , uk
Nk

} and uk
i �= uk

j (i �= j )433

We consider a mixed encoding scheme. The solution X434

contains X t and Xs, representing two types of information435

(motion time and task sequence, respectively). X t represents436

a matrix containing ti jk (the motion time spent on each arc)437

of all robots (k = 1, 2, . . . m) to complete all required tasks.438

The detailed composition of X t is represented as follows:439

X t =

⎡
⎢⎢⎢⎣

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mm

⎤
⎥⎥⎥⎦, (27)440

where the formulation of Mk (k = 1, 2, . . . m) is given as441

follows:442

Mk =

⎡
⎢⎢⎣

tuk
1uk

1k · · · tuk
Nk

uk
1k

...
. . .

...
tuk

1uk
Nk

k · · · tuk
Nk

uk
Nk

k

⎤
⎥⎥⎦. (28)443

Xs follows a two-dimensional encoding scheme for444

sequencing the collision-free routes of robots, as shown in445

Fig. 4. Xs is made of the following parts: Xs,1, Xs,2, . . . , Xs,m446

for each robot. Dimensions 1 and 2 denote the start and447

end nodes within several time slots that correspond to the448

time spent between these nodes. As seen from Fig. 4, uk
i in449

Dimension 1 and uk
j in Dimension 2 are the start and end450

nodes of the visited arc (uk
i , uk

j ) for which ti jk is spent by451

robot k.452

The encoding length for each robot is the planning horizon453

T , and the total length of the encoding scheme is mT . Each454

column of the encoding is a time slot indicating that the robot455

is occupying a particular path within this time window. More456

details on Xs are explained in Section III of [14]. We noted457

that the number of columns for robot k, occupied by arc (i, j),458

corresponds to the (integer) number ti jk , which is described in459

the elements of Mk . The initialization of the solution X is460

provided in the paper appendix.461

B. Energy-Efficient Algorithm462

1) Choices of Operators: In this part, we detail the cus-463

tomized operators of the developed GA for solving the464

MINLPs based on the collision-free mTSP presented in465

Section II. The strategies used for the selection and mutation466

are constructed to customize the genetic algorithm to effi-467

ciently solve the mTSP. The routing problem investigated in468

our manuscript is a variant of the mTSP, and the TSP is its469

fundamental version. When using the GA to solve the TSP470

problem, the removal of the crossover operator is suggested 471

by the observation that the crossover could result in longer 472

computation times and deteriorate the solution quality [31]. 473

The mutation operator is regarded as the most effective one 474

when solving the TSP, since mutation prevents the algorithm 475

to be trapped in a local minimum [31]. Therefore, only 476

the selection and mutation operators are considered in our 477

developed GA. 478

Regarding the selection strategy, the top-ranking method is 479

employed. At each iteration, the best 1/8 solutions are selected 480

from the entire population (as the elite solutions) and retained 481

until the next iteration. 482

Our mutation strategy considers seven operators to deal with 483

the mixed decision variables (motion time and task sequence). 484

These seven operators are based on three general operators, 485

namely, flip, swap, and slide. These are considered in the 486

proposed algorithm. The flip mutation works by randomly 487

choosing two positions in the chromosome and reversing the 488

order in which their values appear between those positions. 489

The swap operator randomly swaps the values of two positions 490

in the chromosome. For the slide operator, two positions in 491

the chromosome are randomly selected, and the contents of 492

these two positions move one position to the left. These three 493

operators can be described as follows [31]: 494

f li p(π, p1, p2) � π ′(p1 : p2) = π(p1,−1, p2), (29) 495

swap(π, p1, p2) � π ′(p1) = π(p2), π
′(p2) = π(p1), (30) 496

slide(π, p1, p2) � π ′(p1 : p2) = [π(p1 + 1 : p2), π(p1)], 497

(31) 498

where π is a segment of the solution. π is a permutation, and 499

π can be X t and Xs. p1 and p2 represent two positions of the 500

segment. Since we use a two-dimensional encoding scheme 501

for representing the task sequence Xs, the positions of two 502

columns are selected for performing the flip, swap, and slide 503

operations. As for the motion time part, the contents of two 504

rows of Xs are selected for the proposed mutation operations. 505

2) Main Procedures: Following the developed encoding 506

scheme, we now present the main procedures of the cus- 507

tomized GA. Algorithm 1 gives the pseudocode to solve the 508

considered MINLP problem. As discussed above, flip, swap, 509

and slide operators are the general mutation operators used by 510

the customized GA. Since two types of decision variables (task 511

sequence and motion time) are involved, the flip, swap, and 512

slide operations are performed for the single Xs and combined 513

Xs and X t . In addition to the above operators, we also consider 514

a random operator to generate motion times for X t . The details 515

of these operations are given in Lines 13-19 of Algorithm 1. 516

Table III lists the related notations used in the devel- 517

oped algorithm. Sub-populations P1(iiter)–P8(iiter) constitute 518

the entire population P(iiter). The sizes of P1(iiter)–P8(iiter) are 519

all assumed to be one eighth of the entire population P(iiter) 520

(Np/8). P1(iiter) is the elite sub-population, while P2(iiter)– 521

P8(iiter) are the sub-populations of seven operations based on 522

P1(iiter). We use the notations Xs(iiter, ip) and X t(iiter, ip) to 523

represent the ipth elite solutions of P1
Xs

and P1
X t

that constitute 524

P1(iiter) at iteration iiter. 525
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Algorithm 1 Weighted-Sum GA for the Formulated MINLP
1: iiter = 0
2: initialize P(iiter)
3: if P(iiter) has infeasible solutions then
4: repair P(iiter)
5: end if
6: while iiter ≤ imax do
7: for doip = 1 to Np

8: evaluate the fitness of F(X) as P(iiter)
9: end for

10: select 1/8 of P(iiter) with the lower fitness as P1(iiter)
11: for ip = 1 to Np/8
12: k = randi(m)
13: flip operation to the kth part of Xs(iiter, ip) used for

P2(iiter, ip), no change to X t(iiter, ip)
14: swap operation to the kth part of Xs(iiter, ip) used for

P3(iiter, ip), no change to X t(iiter, ip)
15: slide operation to the kth part of Xs(iiter, ip) used for

P4(iiter, ip), no change to X t(iiter, ip)
16: rand operation to X t(iiter, ip) as part of P5(iiter, ip),

no change to Xs(iiter, it)
17: flip operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P6(iiter, ip)
18: swap operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P7(iiter, ip)
19: slide operation to the kth part of Xs(iiter, ip) and the

whole part of X t(iiter, ip) used for P8(iiter, ip)
20: end for do
21: P(iiter + 1) = P1(iiter) ∪ P2(iiter) ∪ P3(iiter) ∪ P4(iiter) ∪

P5(iiter) ∪ P6(iiter) ∪ P7(iiter) ∪ P8(iiter)
22: iiter = iiter + 1
23: if P(iiter) has infeasible solutions then
24: repair P(iiter)
25: end if
26: end while

For our customized GA, all the constraints (1)-(24) must526

be satisfied. For this, proper measures should be taken when527

designing this metaheuristic. Regarding the generated infeasi-528

ble solutions that do not satisfy constraints (1)-(19), we use529

repairing operations. For any two successive arcs, the end530

node of the first arc must be the start node of the next531

arc. Also, for each arc, the number of columns must be532

consistent with its motion time. If ti jk is below its minimum533

value for Constraint (8), ti jk will be replaced by its minimum534

value.535

Regarding the remaining constraints, a penalty function,536

defined as p(iiter, X), is included in the fitness function F(X),537

together with the objective function defined as F0(X). The538

composition of F(X) is thus given as follows:539

F(X) = F0(X) + p(iiter, X) (32)540

where F0(X) represents the weighted sum of cycle time and541

energy consumption for solution X , defined by following the542

objective function of P1 as follows:543

F0(X) = Fc(X) + λFe(X). (33)544

TABLE III

NOTATIONS USED FOR THE DESIGNED ALGORITHM

To satisfy the collision-free constraints (20)−(24), a penalty 545

function p(iiter, x) for iteration iiter is defined as follows: 546

p(i ter, X) = (ρiiter)
α(d1(X)β + d2(X)β), (34) 547

where ρiiter is a variable multiplication factor, d1(X) is a 548

function to penalize the solution that fails to satisfy constraints 549

(20)−(24), and d2(X) is a function to punish the solution that 550

does not respect the motion time constraint (8). α and β are 551

the parameters that adjust the size of the penalty value. 552

The values of ρiiter , d1(X), and d1(X) are designed as 553

follows: 554

ρiiter = Ciiter (35) 555

d1(X) =
{

0, X is feasible

|l − R|, otherwise
(36) 556

d2(X) =
{

0, X is feasible∣∣∣(ti jk − tmin
i jk )

∣∣∣, otherwise
(37) 557

where C is a constant, l is the minimum distance between 558

two arbitrary robots on all time unit windows, and R is the 559

minimum safety distance. ti jk is the actual motion time for 560

robot k on arc (i, j). 561

In addition to the weighted-sum strategy, we also consider a 562

lexicographic strategy. In the lexicographic strategy, the cycle 563

time is regarded as the primary objective, while the energy 564

consumption is treated as the secondary one. The minimal 565

cycle time is obtained by solving a single-objective optimiza- 566

tion problem; the obtained cycle time is then incorporated into 567

Algorithm 1 as an additional constraint. These two strategies 568

will be evaluated in Section IV. 569

C. Algorithm for the Pareto Frontier Analysis 570

This section proposes an algorithm for computing the Pareto 571

frontier for the cycle time and energy consumption minimiza- 572

tion by using the ε-constraint method. The ε-constraint method 573

can be efficiently used for computing non-dominated solu- 574

tions [32], [33]. Here, we propose an iterative procedure for a 575

framework based on the ε-constraint method and the developed 576

GA. At each iteration, we solve a single-objective formulation 577

for the studied optimization problem. In this problem, one 578

performance indicator is optimized directly in the objective 579

function, while the other performance indicator is indirectly 580
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Algorithm 2 ε-Constraint Method
1: iiter = 0
2: min Fc subject to constraints (1)-(24), and set β1 = F∗

c (iiter),
ϕ2 = F ′′

e (iiter)
3: min Fe subject to constraints (1)-(24), and set β2 = F∗

e (iiter)
4: insert the pair (β1,ϕ2) in the Pareto solution set �
5: while β2 < ϕ2 do
6: iiter = iiter + 1
7: min Fc subject to constraints (1)-(24) plus the constraint:

Fe < ϕ2, and set β1 = F∗
c (iiter), ϕ2 = F ′′

e (iiter)
8: insert the pair (β1,ϕ2) in the Pareto solution set �
9: end while

10: return the Pareto solution set �

optimized by inserting an additional bound constraint in the581

single-objective formulation.582

Algorithm 2 describes the main steps of our ε-constraint583

method. At each iteration iiter, the values of F∗
c (iiter) and584

F∗
e (iiter) are computed individually. F ′′

e (iiter) denotes the value585

of Fe regarding the optimal solution of F∗
c at iteration586

iiter. The proposed ε-constraint method initializes the num-587

ber of iterations iiter and finds the optimal values of the588

two single-objective optimization problems. The value of the589

optimal single-optimization solution (β1, ϕ2) is inserted into590

the solution set � . After this initialization, a new single-591

optimization problem is iteratively solved by adding an addi-592

tional constraint on the value of the secondary indicator Fe.593

For each iteration, a new solution pair (β1, ϕ2) is added into594

the solution set � . When the value of F ′′
e (iiter) is equal to595

F∗
e (iiter), the iterative process ends and returns the set � .596

IV. CASE STUDIES597

This section discusses the computational results obtained598

from the simulation experiments carried out to demonstrate599

the effectiveness of the proposed methodology for planning600

the collision-free and energy-aware routing of multiple robots601

at one workstation. The simulation settings are provided,602

and several case studies in the automotive industry are then603

conducted.604

A. Simulation Settings605

To study the effectiveness of the proposed methodology, two606

typical types of case studies (spot welding on a car door and607

spot welding on a car underbody) are considered [14]. The608

settings of our case studies are given in Table IV, in which609

seven scenarios are included. Scenarios 1-2 and Scenarios 3-7610

are considered for the first type and for the second type of case611

studies, respectively. For each scenario, the operation nodes612

are distributed equally, and ten experiments have been carried613

out. These settings are suggested by [4], [14]. The maximum614

computation time is set to 1 hour.615

Based on the proposed FTSN model, the developed616

weighted-sum GA and lexicographic GA (WGA and LGA for617

short) are compared with a conventional method and two state-618

of-the-art MINLP solvers (BARON and SCIP). The latter three619

methods are explained shortly as follows:620

TABLE IV

SETTING OF THE CONSIDERED CASE STUDIES

• The conventional method is based on the TSN model 621

considering fixed motion times and on the GA developed 622

in [14] to solve the corresponding MIP that minimizes 623

the cycle time only. 624

• BARON is a commercial solver used to solve MINLP 625

problems [34], [35]. The cycle time and the energy con- 626

sumption are minimized in a weighted-sum form when 627

solving the considered MINLP. 628

• SCIP is the fastest non-commercial solver to solve the 629

MINLP [36]. The problem formulation for the solver 630

SCIP is the same MINLP as for the solver BARON. 631

Both BARON and SCIP implement a spatial branch and bound 632

algorithm that utilizes linear programming for the bounding 633

step to solve MINLP problems. The algorithm in the solver 634

BARON is enhanced by using advanced box reduction tech- 635

niques and convexification techniques for quadratic functions. 636

Further, BARON uses NLP relaxations for bounding. These 637

improvements are not considered in the solver SCIP [37]. 638

In addition to the three methods above, two commonly-used 639

metaheuristics (Tabu Search (TS) and Variable Neighborhood 640

Search (VNS)) are evaluated for further comparison. The 641

tested TS and VNS are next briefly described: 642

• Tabu search is a deterministic metaheuristic based on 643

local search. The implemented TS follows the standard 644

algorithmic procedures presented in [38]. The tabu list 645

is used to escape from the local optimum. Initially, 646

this list is empty. The encoding is set the same as the 647

proposed GA. For generating the candidate list (similarly 648

to the GA population), the neighborhood solutions of a 649

candidate solution are modified by adopting one of the 650

seven operators presented in Algorithm 1 (Lines 13-19) 651

randomly chosen, and the probability for selecting each 652

operation is equal. Regarding the aspiration criterion, 653

if the tabu list contains all the seven operations, the 654

operation with the best solution is removed from the tabu 655

list. Here, no advanced intensification or diversification 656

strategies are used. 657

• The implemented VNS is the standard version of 658

VNS [39], which combines deterministic and random 659

changes in neighborhoods. This algorithm consists of 660

two phases: the shaking phase for the global search 661

and the improvement phase for the local search. The 662

encoding is the same as the proposed GA to construct 663

the neighborhood. For the global search, one of the 664

seven operations presented in Algorithm 1 (Lines 13-19) 665

is randomly selected. For the local search, the seven 666

operations in Algorithm 1 (same as above) are selected 667

to modify the neighborhood solutions by following the 668
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TABLE V

AVERAGED PERFORMANCE FOR SCENARIOS 1–3 VIA WGA

TABLE VI

COMPUTATIONAL RESULTS WHEN VARYING λ

sequencing strategy in Algorithm 1. The local search669

stops when the first improvement is achieved.670

For the proposed GA, the population size Np and the671

maximum number of iterations imax are important parameters.672

We thus conducted a group of numerical experiments for673

Scenarios 1-3 via the developed WGA to better set these674

parameters, as presented in Table V. In these experiments, the675

parameter λ is set to a very small positive number to prioritize676

the makespan. Table V gives the average cycle time, the energy677

consumption, and the computation time for these experiments.678

The chosen Np and imax are 120 and 200, because this679

setting reaches a good balance between the solution quality680

and the computational effort. The settings of Np = 120 and681

imax = 300 are also a good choice, but the computation time682

increases by about 50% with a very small reduction in Fe683

when compared to the settings of Np = 120 and imax = 200.684

With the above settings of Np and imax, we study the effect685

of varying the weighting factor λ on the cycle time and686

energy consumption. Table VI compares the values of these687

performance indicators for Scenarios 1 and 2. As λ becomes688

large, the energy consumption reduction becomes relatively689

more critical, therefore more energy can be saved while the690

cycle time grows. To highlight the importance of the cycle691

time, a very small positive value of λ is needed. To guarantee692

a considerable prioritization of the cycle time over the energy693

consumption, λ is set as 10−5.694

Regarding the parameters of the penalty function used to695

avoid collisions, C is set to 0.5, and α and β are both set to696

be 2. The values of these parameters are the same as the ones697

suggested in [14] since the same safety distance is considered.698

The maximum computation time for all the metaheuristics699

(GA, TS, and VNS) is set to 600 seconds. The motion time700

ti jk for the rand operator is randomly generated between701

[tmin
i jk ,2tmin

i jk ]. For the lexicographic strategy of GA, VNS, and702

TS, the MaxFEs to individually compute the two objectives is703

set to half of the weighted-sum value.704

The hardware for all simulations is an Intel i7-9700 proces-705

sor (3.0GHz) with 8GB of memory. The optimization prob-706

lems are modelled and solved in Matlab R2018. The software707

TABLE VII

CYCLE TIME OF THE METHODS FOR WELDING
ON A DOOR (UNIT: SECONDS)

TABLE VIII

ENERGY CONSUMPTION OF THE METHODS FOR WELDING

ON A DOOR (UNIT: KJ)

ABB RobotStudio is used to simulate the robot operations and 708

verify the results obtained via the FTSN model. RobotStudio 709

is a state-of-the-art robot simulation software, which copies 710

the real software that moves the robots into a production 711

environment. This simulation software allows to perform real- 712

istic simulations and a careful assessment of the optimized 713

solutions, using real robot programs and configuration files 714

identical to those used on the shop floor [40]. In this software, 715

the IRB2400 series robot is selected. 716

B. Welding on a Door 717

Tables VII and VIII compare the cycle time and energy 718

consumption for the considered scenarios of welding on a door 719

(Scenarios 1-2). These two tables show that all the studied 720

methods always obtain solutions for Scenario 1. Differently, 721

SCIP and BARON cannot always find feasible solutions for 722

Scenario 2, which schedules only ten tasks for two robots. 723

These results indicate that the formulated MINLP problem 724

(even for a small-scale scenario) suffers from computational 725

intractability when commercial solvers are used. 726

Table VII shows that, for every experiment of 727

Scenarios 1 and 2, both WGA and LGA compute the 728

shortest cycle time, which is the same achieved by the 729

conventional method (when minimizing the cycle time 730

only). As a result, the average values of WGA, LGA, and 731

the conventional are equal to their worst values, both for 732

Scenarios 1 and 2. 733

Table VIII indicates that the average and worst results of 734

the proposed WGA achieve the lowest energy consumption. 735

For Scenario 1, WGA and LGA compute the minimum energy 736

consumption as the one determined by SCIP and BARON. The 737

energy reduction of these four methods for Scenario 1 is about 738

21%. For Scenario 2, when using WGA and LGA, the energy 739
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TABLE IX

AVERAGE COMPUTATION TIME OF WELDING ON A DOOR (UNIT:SECONDS)

Fig. 5. Geometrical overview of Scenario 1.

Fig. 6. Planned routes via the conventional method for Scenario 1.

is decreased by around 35% in comparison to the conventional740

method. In summary, for these two scenarios, the proposed741

methods efficiently optimize the energy consumption of robot742

routes without deteriorating the cycle time.743

Table IX records the average computation time of different744

methods. The SCIP solver finds the optimal solution in a short745

computation time for Scenario 1 while it fails to find a solution746

for Scenario 2 within the maximum computation time. The747

solver BARON cannot provide a solution for Scenarios 1-2.748

The computation times of the studied metaheuristics (WGA,749

LGA, WTS, LTS, WVNS, and LVNS) compared with the one750

of the conventional method.751

We next present the planned routes of Scenario 1 obtained752

by the conventional method and WGA. The geometrical753

overview is given in Fig. 5. H1 and H2 are the home nodes754

for R1 and R2. A, B , C , and D are task nodes. Nodes A and755

B are assigned to R2, while nodes C and D are assigned to756

R1. The parameters P1
i j –P5

i j , which are computed by following757

the formula (8) in [22].758

Fig. 6 shows the detailed routes of each robot759

obtained by the conventional method including the760

fixed motion times between tasks nodes. As given761

in Fig. 6, the computed node sequences for each762

Fig. 7. Planned routes via the proposed WGA for Scenario 1.

Fig. 8. The planned routes via the proposed WGA for Scenario 1.

robot are as follows: R1: H1 → D → C → H1; 763

R2: H2 → B → H2 → H2 → A → H2. To avoid the 764

collision with the robot R1, the robot R2 returns from node B 765

to home position H2 and waits at node H2 between t = 3 and 766

t = 4 to avoid collisions. 767

Fig. 7 details the obtained routes by solving the MINLP 768

problem via WGA. The computed visited node sequences are 769

as follows: R1: H1 → D → C → H1; R2: H2 → B → 770

H2 → A → H2. When using the proposed FTSN model, 771

R2 can increase the motion time between H2 and A. The 772

kinetic energy can thus be reduced from waiting at node H2 as 773

shown in Fig. 6. Meanwhile, the collision between R1 and 774

R2 is avoided, as shown both in Fig. 6 and Fig. 7. 775

Fig. 8 and 9 show the planned and simulated routes obtained 776

by WGA and implemented in RobotStudio for Scenario 1. The 777

planned and executed routes are marked in yellow and blue, 778

respectively. The geometry of the included nodes is consistent 779

with Fig. 5. It can be seen from Fig. 8 and 9 that the executed 780

routes of R1 and R2 are the same as the planned routes 781

when using WGA. However, there is a small delay between 782

the planned schedule and the executed schedule, as given in 783

Fig. 10. The reason could be the physical constraints of the 784

robot (e.g., limited joint torques), which are neglected in our 785

robot scheduling problem. 786

C. Welding on an Underbody 787

Table X, Table XI, and Table XII record the performance 788

of the studied methods for Scenarios 3-7 to weld on the 789

automotive underbody. 790
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TABLE X

CYCLE TIME OF THE METHODS FOR WELDING ON AN UNDERBODY (UNIT: SECONDS)

TABLE XI

ENERGY CONSUMPTION OF THE METHODS FOR WELDING ON AN UNDERBODY (UNIT:KJ)

Fig. 9. The simulated routes implemented in RobotStudio for Scenario 1.

Fig. 10. Planned and simulated task schedules for Scenario 1.

Table X presents the average and worst values of the cycle791

time for the considered methods. Both the solvers SCIP and792

BARON cannot obtain any solution for all the scenarios of793

welding on the underbody, as the numbers of tasks and robots794

TABLE XII

AVERAGED COMPUTATIONAL TIMES REGARDING WELDING ON AN

UNDERBODY (UNIT:SECONDS)

regarding these scenarios are more complex than the ones of 795

welding on the door. Regarding the cycle time, LGA and the 796

conventional method achieve the minimal value, both for the 797

average and the worst experiment results. This is because LGA 798

uses the minimal value of the cycle time as a constraint when 799

searching for the most energy-efficient solution. Although 800

WGA performs better than WTS, LTS, WVNS, and LVNS 801

methods, the weighted-sum strategy is not as good as the 802

lexicographic strategy when the cycle time is prioritized. 803

Table XI records the average and worst values of the energy 804

consumption for Scenarios 3-7. Both LGA and WGA reduce 805

the energy consumption when compared to the conventional 806

method. Regarding the average values, LGA obtains the lowest 807

value for all these scenarios, and its energy reduction is at 808

least 30% when compared to the conventional method. As for 809

the worst case, although LGA is slightly worse than the WGA 810

algorithm for Scenarios 6 and 7, their difference is very small. 811

LGA is still the most efficient searching for the lowest energy 812

consumption while minimizing the shortest cycle time. 813

Table XII presents the averaged computation time of 814

LGA and WGA in comparison to the other methods for 815

Scenarios 3-7. Table XII confirms that SCIP and BARON fail 816

to find a feasible solution. The conventional method, and WGA 817

and LGA efficiently solve all the scenarios in a reasonable 818

computation time. Since LGA needs first to compute the 819
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Fig. 11. Relative distances between each pair of robots via the FTSN model
for Scenario 6.

Fig. 12. Robot routes for Scenario 6 based on the FTSN model.

minimal cycle time, the total computation time takes longer820

than WGA.821

We next discuss the planned routes based on the FTSN822

model and WGA. Fig. 11 gives the relative distance of any823

two robots based on the FTSN model for Scenario 6. Fig. 11824

shows that the FTSN model avoids collisions between robots825

for each time slot. Fig. 12 illustrates the corresponding routes.826

All the robots start from their home nodes and ultimately827

return to these home nodes. Fig. 13 shows their TCP traces in828

the welding process. These robots move in a collision-free and829

energy-aware way among the predefined tasks, and the traces830

are demonstrated in RobotStudio.831

D. Relationship Between These Two Objectives832

This part discusses the trade-off between the cycle833

time and energy consumption minimization for the studied834

energy-efficient routing problem.835

In general, our paper aims to achieve high productivity836

with low energy consumption. The energy reduction is thus837

expected to be optimized when the shortest cycle time is838

considered. For energy reduction purposes, the solution set839

includes Pareto optimal solutions (also called non-dominated840

solutions) and weakly Pareto optimal solutions [41]. We use841

the coverage area of these two types of solutions as the metric842

to evaluate the effects of energy reduction. The coverage843

TABLE XIII

SIZES OF EACH COVERAGE AREAS

TABLE XIV

COMPUTED PARETO SOLUTIONS BY THE ε-CONSTRAINT

METHOD FOR SCENARIO 5

area metric is the 2-D form of the hypervolume indicator, 844

which is a commonly-used metric to evaluate the domi- 845

nance in multi-objective optimization [42], [43]. We com- 846

pare ε-constraint method with Non-dominated Sorting Genetic 847

Algorithm II (NSGA-II), which is a state-of-the-art algorithm 848

used in multi-objective optimization [44]. 849

Fig. 14 shows the results obtained by the ε-constraint 850

method (presented in Algorithm 2) and NSGA-II for the 851

selected scenarios. In Fig. 14, for each scenario, the energy 852

consumption of multiple robots is reduced considerably for the 853

shortest cycle time. Table XIII, which compares the coverages 854

areas of the two methods, shows that the proposed ε-constraint 855

has a larger coverage area. The ε-constraint method computes 856

the set of weakly Pareto optimal solutions and Pareto optimal 857

solutions. The weakly Pareto optimal solutions allow us to 858

see the changes in energy reduction for the minimum cycle 859

time. NSGA-II focuses on finding non-dominated points in 860

the Pareto set, and the changes of energy reduction for the 861

minimum cycle time cannot be easily detected. 862

The extreme point with the shortest cycle time in the Pareto 863

set of these two methods can be compared in Fig. 14. This 864

extreme point is defined as the point with minimal energy 865

consumption and the shortest cycle time, and this point can 866

be useful for the manufacturer to achieve high productivity 867

with low energy consumption. Comparing the extreme points 868

with the shortest cycle time, in general, the ε-constraint 869

method has a shorter cycle time than the NSGA-II method. 870

This indicates that the NSGA-II method may have difficulties 871

finding good extreme points, due to its limited exploration 872

ability for MINLPs, as observed in [45]. 873

We then discuss the solution obtained by the ε-constraint 874

method for Scenario 5 as an illustrative example. In Fig. 14(d), 875

when obtaining the minimum cycle time (18 seconds), the 876

energy consumption of multiple robots can be further reduced 877

(from about 16 k J to about 9 k J ). It is thus possible to 878

minimize energy consumption for the minimized cycle time. 879

Fig. 14(d) also shows that, when the energy consumption is 880

lower than its value for the minimum cycle time, the cycle 881

time increases accordingly. 882
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Fig. 13. Illustration of robot traces using the FTSN model for Scenario 6.

Fig. 14. Pareto frontiers computed via the ε-constraint method for the
selected scenarios.

Table XIV shows that the ε-constraint method computes883

four non-dominated solutions (at iterations 4, 6, 8 and 9). For884

the minimal cycle time (Fc = 18), energy consumption can be 885

reduced considerably (from 15.75 KJ to 9.37 KJ) when com- 886

pared with the case in which Fe is not considered. The solution 887

at iteration 4 becomes an extreme point of the Pareto frontier 888

regarding the minimum cycle time. Since Algorithm 2 is based 889

on GA, the computation times at different iterations are quite 890

close to each other, considering that at each iteration a single 891

objective optimization problem is solved by the same GA 892

configuration. 893

V. CONCLUSION AND FUTURE RESEARCH 894

This paper studies the energy-efficient robot routing prob- 895

lem for a multi-robot station in manufacturing cells. Our 896

paper minimizes the cycle time and energy consumption 897

jointly and meets the expectation of the producers to save 898

energy for the shortest cycle time. We propose a flexible 899

time-space network model and a customized GA to enable 900

energy-aware and collision-free routing of the robots. Lexico- 901

graphic and weighted-sum strategies are considered to mini- 902

mize energy consumption while considering the minimal cycle 903

time. Moreover, we present an ε-constraint algorithm to study 904

the trade-off of the two objectives for the considered MINLPs. 905

From the numerical results, optimizing task sequences 906

and motion times jointly reduces the energy consumption 907

considerably (up to 30%) without changing the quality of 908

cycle time. The lexicographic formulation performs slightly 909

better than the weighted-sum formulation. Since the decision 910

variables (task orders and motion times) of the studied objec- 911

tives are closely correlated, the weighted-sum formulation is 912

less computationally efficient than the lexicographic one. The 913

results of the ε-constraint method confirm the potential of 914

energy consumption reduction for the shortest cycle time. The 915

ε-constraint method computes the set of weakly Pareto optimal 916

solutions and Pareto optimal solutions, allowing us to see the 917

changes in energy reduction for the minimum cycle time. 918
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Future research will extend from the robot routing problem919

of planar motions to 3-D moves. This extended problem is920

more complicated and needs to consider the movements of921

multi-joints.922

APPENDIX923

The initialization of the solution X is given924

in Algorithm 3.925

Algorithm 3 Initialize a Solution X
1: for k = 1 : m do
2: generate a sequence sk of all elements from Vk randomly
3: if tk > Vk then
4: for l = Vk + 1 to tk do
5: select an element from Vk randomly for sk(l)
6: end for
7: end if
8: swap the position of the first hk and the last task in sk

9: let Sk,1(1) = hk , Sk,1(2 : tk) = sk(1 : tk − 1)
10: let Sk,2(1 : tk − 1) = sk(1 : tk − 1), Sk,1(tk) = hk

11: Compose Mk by letting ti jk = tmin
i j

12: Compose Xs,k by based on Sk,1, Sk,2 and ti jk

13: end for
14: Compose Xs and X t based on Xs,k and Mk , respectively
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[8] L. Bukata, P. Šůcha, Z. Hanzalek, and P. Burget, “Energy optimization952

of robotic cells,” IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 92–102,953

Feb. 2017.954

[9] M. Brossog et al., “Reducing the energy consumption of industrial robots955

in manufacturing systems,” Int. J. Adv. Manuf. Technol., vol. 78, no. 5,956

pp. 1315–1328, 2015.957

[10] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy958

for multi-robot task allocation,” Int. J. Robot. Res., vol. 32, no. 12,959

pp. 1495–1512, 2013.960

[11] E. Åblad, D. Spensieri, R. Bohlin, and J. S. Carlson, “Intersection-961

free geometrical partitioning of multirobot stations for cycle time962

optimization,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 842–851,963

Oct. 2017.964

[12] I. Suemitsu, K. Izui, T. Yamada, S. Nishiwaki, A. Noda, and T. Nagatani,965

“Simultaneous optimization of layout and task schedule for robotic cel-966

lular manufacturing systems,” Comput. Ind. Eng., vol. 102, pp. 396–407,967

Dec. 2016.968

[13] L. Jin and S. Li, “Distributed task allocation of multiple robots: A control 969

perspective,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 5, 970

pp. 693–701, May 2018. 971

[14] J. Xin, C. Meng, F. Schulte, J. Peng, Y. Liu, and R. Negenborn, “A time- 972

space network model for collision-free routing of planar motions in 973

a multi-robot station,” IEEE Trans. Ind. Informat, vol. 16, no. 10, 974

pp. 6413–6422, Oct. 2020. 975

[15] S. Gürel, H. Gultekin, and V. E. Akhlaghi, “Energy conscious scheduling 976

of a material handling robot in a manufacturing cell,” Robot. Comput.- 977

Integr. Manuf., vol. 58, pp. 97–108, Aug. 2019. 978

[16] M. Gadaleta, M. Pellicciari, and G. Berselli, “Optimization of the energy 979

consumption of industrial robots for automatic code generation,” Robot. 980

Comput.-Integr. Manuf., vol. 57, pp. 452–464, Jun. 2019. 981
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