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Abstract
In this paper, a new time-space network model is proposed for addressing the time-
dependent rural postman problem (TDRPP) of a single vehicle. The proposed model 
follows the idea of arc-path alternation to form a feasible and complete route. Based 
on the proposed model, the time dependency of the TDRPP is better described to 
capture its dynamic process, compared to the existing methods using a piecewise 
constant function with limited intervals. Furthermore, the property of first-in-first-
out (FIFO) can be satisfied with the time spent on each arc. We investigate the FIFO 
property for the considered time-dependent network and key optimality property for 
the TDRPP. Based on this property, a dedicated genetic algorithm (GA) is proposed 
to efficiently solve the considered TDRPP that suffers from computational intracta-
bility for large-scale cases. Comprehensive simulation experiments are conducted 
for various time-dependent networks to show the effectiveness of the proposed GA.
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1  Introduction

Arc routing problems have been extensively investigated in the last decade. Arc 
routing problems are essentially routing problems in which the tasks to be per-
formed are located on the arcs of the network. Many practical problems (such as 
trash collection, road gritting, and newspaper delivery) can be categorized into 
typical arc routing tasks (Corberán et al. 2021; Corberán and Laporte 2014; Cor-
berán and Prins 2010).

Arc routing is a generalized problem that can be further divided into rural 
postman problem (RPP) and Chinese postman problem (CPP). In the resulting 
network, if some (not necessarily all) of the edges (for an undirected graph) or 
arcs (for a directed graph) are serviced, the corresponding formulation is an RPP. 
If all the edges or arcs must be visited, the planning problem is a CPP. Analo-
gous to vehicle routing problems (VRPs), arc routing problems can be further 
described with additional constraints, such as time windows, constrained capaci-
ties, or time-dependent service costs (Tagmouti et al. 2010, 2011). For arc routing 
problems, the traversal can be completed by a single vehicle or a fleet of vehicles.

As an essential branch of arc routing problems, the RPP has received much 
attention from many scholars. The RPP was initially proposed as the routing 
problem of a single vehicle for a single depot (Orloff 1974), and the arc cost 
is fixed. Later, scholars extended the RPP for multiple vehicles (Quirion-Blais 
et al. 2017), multiple depots (Fernández et al. 2018) and changeable arc costs. An 
example of the RPP with varying arc costs is the literature that considers the RPP 
with various costs passing through the same arc in different directions, which 
is called the windy rural postman problem (Nossack et  al. 2017). Furthermore, 
some scholars (Colombi et  al. 2017) consider that the traversal priority of dif-
ferent arcs in the network is not the same, which is thus called hierarchical rural 
postman problem.

The time-dependent RPP (TDRPP), regarded as a special RPP, has several 
challenges for providing efficient models and algorithms. The TDRPP aims to 
find a shortest-time tour that services all the required arcs, and the time spent 
on each arc depends on its arrival time on the arc. The first challenge is that arcs 
in a time-dependent network can be traversed multiple times, so the number of 
arcs traversed in an optimal solution cannot be known in advance when modeling. 
Another challenge is that the time spent on each arc is a nonlinear function. Thus, 
the optimization problem cannot be easily solved by a commonly used mixed 
integer programming (MIP) solver.

Due to the challenges above, only a very few works have been proposed to 
solve the TDRPP (Tan and Sun 2011; Tan et al. 2013; Zanotti et al. 2019; Calo-
giuri et al. 2019). For the TDRPP, the first-in-first-out (FIFO) property (for each 
link, an earlier arrival time leads to an earlier departure time) should be guaran-
teed (Gendreau et al. 2015). For the existing literature (Tan et al. 2013; Calogiuri 
et  al. 2019), the dynamic process of the service/travel time function in the net-
work is not sufficiently represented under the FIFO condition. To achieve a suit-
able mathematical formulation (that better represents the time dependency under 
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the FIFO condition) and to efficiently solve the resulting optimization problem, 
we make the following contributions:

•	 A new time-space network model is proposed for the formulation of time-
dependent rural postman problems. The proposed model uses a discrete-time 
network that can represent a time-varying physical network. Therefore, the time 
dependency of the TDRPP is better described to capture its dynamic process, 
compared to the existing methods, by using a piecewise constant function with a 
limited number of intervals. Moreover, the FIFO property can be satisfied for the 
time spent on each arc using the proposed model.

•	 An optimality property is provided for the TDRPP that satisfies the FIFO rule for 
the time-dependent network. The optimality property is used to develop a cus-
tomized GA to efficiently solve the considered TDRPP. To the best of our knowl-
edge, no metaheuristic algorithm has been developed to solve a TDRPP problem. 
The GA proposed in this paper can provide near-optimal solutions in a reason-
able computation time in comparison to a commercial solver and two commonly-
used methods.

In the proposed time-space network model, based on the principle of the arc-path 
alteration, the route consists of service arcs and transition paths between every two 
successive service arcs. Several time slots discretize the planning horizon, and a 
dynamic physical network is mapped into a static time-space network to establish an 
integer programming formulation for the considered TDRPP. The developed GA is 
used to address the computational intractability of large-scale cases for the consid-
ered TDRPP. Comprehensive simulation experiments have been carried out to show 
the effectiveness of the proposed algorithm.

The remaining parts of this paper are organized as follows: Sect. 2 reviews the 
related literature. In Sect. 3, a time-space network model is proposed to formulate 
the considered TDRPP. In Sect. 4, the key optimality property of the solution is ana-
lyzed, and a customized GA is developed. Section 5 presents a comparison of the 
simulation results obtained via various solving methods. The conclusion and future 
research directions based on extensions of our methodology are given in Sect. 6.

2 � Related work

The investigated routing problem can be regarded as a particular arc routing prob-
lem (Corberán and Prins 2010) with time-varying travel time for each link in the 
network. The following literature review relates to time-dependent arc routing prob-
lems and routing problems with time-dependent travel time functions.

2.1 � Time‑dependent arc routing problems

As mentioned in the introduction, arc routing problems aim to find a set of vehi-
cle routes to traverse all predefined arcs in a given network (Gendreau et  al. 
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2015). For arc routing problems, three problem types are identified: capacitated 
arc routing problem (CARP), Chinese postman problem and rural postman prob-
lem (Mour ao and Pinto 2017). Here, we focus on the literature on the issues with 
time dependencies.

The CARP is a particular arc routing problem in which the service process 
is subject to vehicle capacity constraints. In the direction of time-dependent 
CARPs, Tagmouti and his team have made noticeable contributions. Motivated 
by winter gritting applications, they studied the arc routing problem with a capac-
ity limitation and a time-dependent service cost (Tagmouti et al. 2007). The stud-
ied arc routing problem is transformed into a node routing problem that is solved 
by using a column generation algorithm. In Tagmouti et  al. (2010), a variable 
neighborhood descent heuristic algorithm is developed to solve the previously 
mentioned problem. Furthermore, a dynamic variant of arc routing problems with 
a capacity limitation is proposed in Tagmouti et  al. (2011). Black et  al. (2013) 
studied a kind of prize-collecting arc routing problem in which the transport man-
ager must choose how to carry out a large number of truckloads and deliveries in 
the road network since the travel time of the road network varies over each day. 
Vincent and Lin (2015) also studied the problem of prize-collecting arc routing 
and proposed an iterative greedy heuristic algorithm.

The CPP is an arc routing problem in which a single vehicle needs to traverse 
all streets, and this problem was first proposed by Guan (1962). The first math-
ematical model for the time-varying CPP was proposed in Wang and Wen (2002) 
and their plan includes fuzzy time windows. However, the latter model can only 
solve the particular case in which all loops in the network pass through the con-
straints related to an original vertex 0. For the CPP with time-dependent travel 
times, Sun et al. (2011a, 2011b) proved that the time-dependent CPP is NP-hard 
and a dynamic programming method as well as a branch-and-bound algorithm 
were proposed. Sun et al. (2015) proposed a linear integer programming formu-
lation, namely, the cyclic path formulation, which could be seen as an extended 
version of the method in Wang and Wen (2002).

The RPP is a more generalized CPP, where a subset of required arcs needs 
to be serviced. For TDRPPs, only a few works (Tan and Sun 2011; Tan et  al. 
2013; Calogiuri et  al. 2019) have been published. An integer programming 
model using the arc-path alternation is established, and service arcs and travel 
arcs are defined to distinguish different patterns depending on whether each arc 
is serviced (Tan and Sun 2011; Tan et al. 2013). It is observed from (Tan et al. 
2013) that the service/travel time spent on each arc is represented by a piecewise 
constant function with a limited number of intervals. This representation can-
not sufficiently describe the dynamic process of the service/travel time function 
that changes continuously in practice. Moreover, the FIFO property of the time-
dependent function cannot be guaranteed. In Calogiuri et  al. (2019), a branch-
and-bound algorithm is proposed for the TDRPP, where the FIFO conditions are 
satisfied. However, the mathematical representation is not provided for modeling 
the TDRPP. Furthermore, for the same service arc, the service time and the travel 
time have different patterns and this difference is not provided in Calogiuri et al. 
(2019).



2947

1 3

Time‑dependent rural postman problem: time‑space network…

Currently, the TDRPP problem lacks a mathematical model for better represent-
ing the time dependency of the service/travel time function in the network under the 
FIFO condition. Moreover, no efficient metaheuristic algorithm is available to solve 
the associated problem.

2.2 � Time‑dependent travel time function

In time-dependent routing problems, a key element is to define the travel time func-
tion of each arc in the network and to incorporate the time dependencies into the 
routing problem. Therefore, special attention has been paid to the study of travel 
time functions.

The concept of time-varying travel time was first proposed by (Beasley 1981) in 
which the travel time between customers is modeled by means of two sets of val-
ues in two nonoverlapping periods. Later, a robust and straightforward monotonic-
ity property of the travel time function was identified in (Ahn and Shin 1991) to 
simplify the computational complexity since time-varying traffic conditions are 
involved. This property means that a vehicle arrives in a particular arc at an earlier 
time and it should also leave at an earlier time. The latter property is also referred to 
as first-in-first-out (FIFO).

The FIFO property represents a generalized travel time, and many scholars 
worked on deriving the travel time function before solving time-dependent routing 
problems. Until now, the majority of the travel time functions are obtained from the 
computation of speed variations (Sung et al. 2000; Horn 2000; Ichoua et al. 2003). 
Among them, Ichoua et  al. (2003) proposed a model to generate the travel time 
function by satisfying the FIFO property based on a predicted speed function. This 
model, called the IGP model, divides the time into multiple periods during the plan-
ning horizon, and vehicles travel on a fixed-length street. The travel speed is consid-
ered as a piecewise linear function. Another method to obtain the FIFO travel func-
tion is to define a smoothed travel time function based on a step function of travel 
times (Fleischmann et al. 2004).

The easily-implemented IGP model has been widely used for computing the 
travel time on each arc of time-dependent routing problems. Typical examples are 
the time-dependent traveling salesman problem (Cordeau et  al. 2014), the time-
dependent vehicle routing problem (Huang et al. 2017) and the time-dependent rural 
postman problem (Calogiuri et  al. 2019). More details regarding the travel time 
function can be found in (Gendreau et al. 2015). The IGP model is useful for gen-
erating the FIFO discrete service/travel time on each arc in our considered TDRPP.

2.3 � Overall assessment of the literature

As a summarizing remark, TDRPPs have not been sufficiently investigated in the 
literature, and a mathematical model that better captures the time dependency of 
the TDRPP is needed. In addition, the FIFO property should be satisfied when rep-
resenting the TDRPP. An efficient metaheuristic algorithm is needed for addressing 
the TDRPP that satisfies the FIFO property.
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3 � Problem setting and formulation

In this section, a time-space network model is proposed to formally describe the 
considered TDRPP problem. The first part defines the research problem, and the 
second part gives the detailed mathematical formulation of the studied routing 
problem.

3.1 � Problem statement

In this paper, we investigate a time-dependent RPP problem. In the defined research 
problem, a shortest-time route is searched for traversing a subset of all the directed 
arcs in a time-dependent network. The route departs from the depot node at time 
0 and returns to the depot node within the entire planning horizon. The arcs in the 
subset are referred to as service arcs. Because the service may need to be visited 
multiple times, each service arc has a service time (with service) and a travel time 
(without service). The remaining arcs only have a travel time as the service is not 
provided. Discrete-time-dependent functions represent both the travel and service 
times.

For the considered TDRPP problem, important assumptions are given as follows:

•	 Both the service time function and the travel time function of each arc satisfy the 
FIFO property, and these functions are assumed to be known in advance;

•	 The network is strongly connected. In other words, for any two nodes in the net-
work, there exists a connected path between these two nodes.

•	 Each service arc must be serviced only once.
•	 Each arc can be visited more than once.

3.2 � Graph representation

The network is regarded as a directed network G(V, A), where V is a finite set of 
nodes, and A is a finite set of arcs A = {(i, j)|i ∈ V , j ∈ V , i ≠ j} between different 
adjacent nodes.

In the considered TDRPP, two types of arcs are identified: service arc and travel 
arc. The service arc is a particular arc that needs to be serviced, and the travel arc 
is a general arc without any service. In general, a particular arc (i, j) can be both a 
service arc and a travel arc, since it may be necessary to visit the same arc more than 
once to traverse all the service arcs. However, the time spent on the same arc can be 
different. If we define functions �i,j and �i,j as the service time and the travel time for 
the same arc (i, j), the value of �i,j is typically larger than the one of �i,j when enter-
ing arc (i, j) at the same time. Since we consider a time-dependent routing problem, 
these two functions can be extended as �i,j(t) and �i,j(t) , where t is the arrival time of 
the corresponding vehicle at arc (i, j).
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Assume that there are K service arcs. To facilitate the modeling, we define the 
origin node as node 1 and introduce a dummy node 0. Two dummy service arcs, 
(0,1) and (1,0), are included in the set of service arcs. The set of service arcs is 
defined as AR ( AR ⊆ A ∪ {(0, 1), (1, 0)} ); AR thus contains {(0, 1), (1, 0)}.

For the set AR , the sequence of service arcs to be visited is defined as 
�0 = {a0, a1, ..., aK−1} (ak ∈ AR, k = 0, 1, ...,K − 1) , where a0 and aK−1 are dummy 
arcs (0,1) and (1,0). We observed that in AR , there are K − 2 real service arcs and 2 
dummy service arcs.

Following the idea of arc-path alternation proposed in Tan and Sun (2011), a 
transition path defined as pk is inserted between two successive service arcs ak−1 and 
ak ( k = 1, 2, ...,K − 1 ). The transition path pk , which connects the end node of ser-
vice arc ak−1 and the start node of service arc ak , could include several travel arcs in 
the network. We noted that pk is an empty path if the end node of ak−1 and the start 
node of ak are the same. Then, we define (pk, ak) ( k = 1, 2, ...,K − 1 ) as the k-th step. 
In particular, the 0-th step is ( a0 ). Based on the idea of arc-path alternation, each arc 
can be visited multiple times for flexible operations in practice. This means that a 
particular arc can appear in different steps of a complete route.

Based on the defined service arc sequence �0 and the transition path pk , a feasible 
complete route is defined as � = {a0, p1, a1, p2, a2, ..., pk, ak, ..., pK−1, aK−1} . Because 
we consider a time-dependent routing problem, the complete route � is further rep-
resented as �(t) , indicating that route � starts at time t.

3.3 � Time‑space network model

In this subsection, based on the idea of arc-path alternation, a time-space network 
model is proposed to formulate the considered TDRPP.

Time-space network models have been widely used in the transportation domain 
to formulate the routing problems, including time constraints and location con-
straints (Yang and Zhou 2014; Meng and Zhou 2014). The time-space network 
framework is a discrete-time network. In the time-space network, the time-varying 
physical network is mapped to multiple time-invariant physical networks at different 
time instants. Therefore, the correlation between the time and the location can be 
captured when variations are considered.

For the time-space network modeling framework, a continuous-time planning 
horizon is discretized into several time slots, denoted as {0,Δt, 2Δt, ..., T × Δt} . The 
notation Δt denotes a time slot (e.g., 1 minute) during which no perceptible changes 
of travel times are assumed to occur in a transportation network. The parameter T 
is a sufficiently large positive integer, and t ( t ∈ {1, 2, ..., T} ) represents the time 
when a vehicle enters arc (i, j). As a result, the time-space network decomposes the 
vehicle’s overall routing process into several time slots. An example is illustrated in 
Sect. 3.4.

Before introducing the mathematical formulation, input parameters, general sub-
scripts, and decision variables for the considered TDRPP are given in Tables 1 and 
2. By using a time-space network framework, the TDRPP is formulated as follows:
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subject to

(1)min
∑

t∈Φt

t × X
K−1,t

(1,0)

(2)
∑

t∈Φt

X
0,t

(0,1)
= 1

(3)
∑

t∈Φt

X
K−1,t

(1,0)
= 1

(4)
∑

k∈Φs

∑

t∈Φt

X
k,t

(i,j)
= 1, ∀(i, j) ∈ AR

(5)
∑

(i,j)∈AR

∑

t∈Φt

X
k,t

(i,j)
= 1, ∀k ∈ Φs

Table 1   Input parameters and general subscripts

Symbol Description

ts Start time within the planning horizon
�(ts) The complete TDRPP route starting at time ts
V Set of nodes in the directed network
A Set of arcs in the directed network
AR Set of K service arcs. AR ⊆ A ∪ {(0, 1), (1, 0)}

Φt Set of time indices {1, 2, ...T} , T is the largest time index
Φs Set of step indices {0, 1, 2, ...K − 1} , K is the number of service arcs
i, j Node index, i, j ∈ V

(i, j) Arc index, (i, j) ∈ A

t Time slot index, t ∈ Φt

k Index used for the service arc and the transition path, k ∈ Φs

�i,j(t) Travel time function, travel time on arc (i, j) at time t
�i,j(t) Service time function, service time on arc (i, j) at time t

Table 2   Decision variables Symbol Description

X
k,t

(i,j)
Binary variables. Xk,t

(i,j)
= 1 , if 

service arc (i, j) ( (i, j) ∈ AR ) 
is served at step k and time t, 
otherwise is 0

Y
k,t

(i,j)
Binary variables. Yk,t

(i,j)
= 1 , if 

travel arc (i, j) ∈ A is traversed 
at step k and time t, otherwise 
is 0
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where the objective function presented in (1) is to minimize the total time spent to 
complete all the service arcs. This total time, which is defined as f�(ts) , is equivalent 
to the time of reaching the dummy service arc (1,  0) at the last step K − 1 . Con-
straints (2) and (3) guarantee that the two dummy arcs (0,  1) and (1,  0) can only 
be visited in the first step 0 and the last step K − 1 . Equality (4) ensures that each 
required arc needs to be serviced only once. Equality (5) constrains that only one 
service arc is included in each step. Constraint (6) guarantees that the number of 
arcs reaching a node in the route started from t = ts is equal to the number of arcs 
leaving that node. Constraint (7) guarantees that the time of each arc corresponds 
to a service/travel discrete-time-dependent function under the FIFO condition. Note 
that if the FIFO does not hold on this network, the equality sign should be replaced 
by the sign of ‘greater or equal’. This modification allows the model to have a more 
general representation of time dependency. Equation (8) describes when the routing 
starts based on the value of ts . Equation (9) and (10) indicate that the decision vari-
ables are binary values.

The optimization problem above is an integer programming (IP) that can be solved effi-
ciently by commercial solvers (e.g., Gurob i (Gurobi 2018)) only for small-scale problems. 
In Sect. 4, an efficient algorithm will be developed to solve large-scale problems efficiently.

3.4 � Illustrative example

In this subsection, an example is proposed to illustrate the routing process by 
using the proposed time-space network model. In this example, a simple network, 
including four nodes and one dummy node, is considered; and the routing of this 
network is presented in Fig. 1.

Figure 1a gives the topology of the example network, which includes four nodes 1-4 
and one dummy node 0, which is connected to origin node 1. The feasible arcs and the 

(6)

∑

i∈V

∑

t∈Φt

Y
k,t

(i,j)
+

∑

i∈V∪0

∑

t∈Φt

X
k−1,t

(i,j)
=
∑

i∈V

∑

t∈Φt

Y
k,t

(j,i)
+

∑

i∈V∪0

∑

t∈Φt

X
k,t

(j,i)
,

∀j ∈ V ,∀k ∈ Φs�0

(7)

∑

i∈V

∑

t∈Φt

t × Y
k,t

(j,i)
+

∑

i∈V∪0

∑

t∈Φt

t × X
k,t

(j,i)
=
∑

i∈V

∑

t∈Φt

(t + �i,j(t)) × Y
k,t

(i,j)
+

∑

i∈V∪0

∑

t∈Φt

(t + �i,j(t)) × X
k−1,t

(i,j)
, ∀j ∈ V ,∀k ∈ Φs�0

(8)X
0,ts
(0,1)

= 1

(9)X
k,t

(i,j)
∈ {0, 1}, (i, j) ∈ AR, k ∈ Φs, t ∈ Φt

(10)Y
k,t

(i,j)
∈ {0, 1}, (i, j) ∈ A, k ∈ Φs, t ∈ Φt
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required service arcs are given in set A and set AR , respectively. The set AR contains 
two dummy arcs (0,1) and (1,0), and their travel times are always 0. The solid lines and 
the dash lines represent the required service arcs and travel arcs, respectively.

Figure  1b maps a feasible route by using the proposed time-space network 
model. This model can clearly represent the specific location of the correspond-
ing vehicle at a time. Figure 1b shows that the vehicle serves arc (1, 2) at time 
1 → 3 , and the service time is �1,2(1) . The vehicle travels throughout arc (1, 2) at 
time 5 → 6 , and then the travel time is �1,2(5).

Figure2 illustrates the feasible route of Fig.1b in more detail. In Fig.2, the 
route is divided into 5 steps ( K = 5 ), and in each step, a service arc is included. 
The variables Yk,t

(i,j)
 and Xk,t

(i,j)
 correspond to the choice of service arcs and travel 

arcs at step k and time t, respectively.

4 � Solution algorithm

The previous section introduced our time-space network model for the considered 
TDRPP. Due to the computational intractability of the TDRPP, as suggested in 
Tan et al. (2013), solving such a model by using a commercial solver could take 

(a)
(b)

Fig. 1   Conceptual illustration of a feasible route for the TDRPP

Fig. 2   Composition of a feasible route by using the proposed time-space network model
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an unacceptable computation time when dealing with larger-scale problems. At 
the same time, the FIFO property should be satisfied in the considered TDRPP. 
For these reasons, we will first analyze how to incorporate the FIFO property 
in the TDRPP, and we will then design an efficient metaheuristic to solve the 
TDRPP with FIFO.

4.1 � Property of the FIFO TDRPP

In this part, we study a crucial optimality property of the proposed TDRPP in which 
FIFO is satisfied both for the travel time function �i,j(t) and the service time function 
�i,j(t) . It is worth noting that this optimality property is valid in a discrete-time net-
work. The analysis of this property will help construct the solution of the considered 
TDRPP.

For a time-dependent network that satisfies FIFO, we define function �i,j(t) as the 
time spent on arc (i, j) with the arrival time t. If the service operation is performed 
for arc (i, j), �i,j(t) is equivalent to �i,j(t) ; otherwise, �i,j(t) is equal to �i,j(t) . As a FIFO 
network is considered, both functions �i,j(t) and �i,j(t) should also satisfy FIFO.

In a discrete-time-dependent network, every arc satisfying the FIFO property can 
be described in the following form:

where condition (11) means that, on each arc an earlier arrival leads to an earlier 
departure and a later arrival results in a later departure. In what follows, we will 
extend it from the arc between two nodes into the path between two nodes in the 
network.

Lemma 1  In a strongly connected network that satisfies the FIFO property, for any 
two nodes i and j, the path between these two nodes also satisfies the FIFO property.

Proof  For this lemma, two conditions needs to be considered. 

1.	 If nodes i and j are directly connected, i.e., (i, j) ∈ A , the path satisfies FIFO fol-
lowing Equation (11).

2.	 If nodes i and j are not directly connected, we let v1 = i , vn = j and there are 
n − 1 arcs between these two nodes. The path can be described as {v1, v2, ...vn} 
and (vk, vk+1) ∈ A, k = 1, .., n − 1 . The total time spent on this path is denoted 
as f{v1,v2,...,vn}(ts) . We also know that f(v1,v2)(ts) = ts + �v1,v2

(ts) . Consider t1 and t2 
( t1 ≤ t2 ); we have the following conditions: 

 Based on Equation (11) on arc (v1, v2) , one can obtain the following inequality: 

(11)if t1 ≤ t2, t1 + �i,j(t1) ≤ t2 + �i,j(t2),∀t1, t2 ∈ {0, 1, ..., T},

(12)
{

f{v1,v2}(t1) = t1 + �v1,v2
(t1)

f{v1,v2}(t2) = t2 + �v1,v2
(t2).
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 Furthermore, we extend the arc (v2, v3)

 Based on formula (13) and (14), we deduce that f{v1,v2,v3}(t1) ≤ f{v1,v2,v3}(t2) , and 
recursively, we have that f(v1,...vn)(t1) ≤ f{v1,...,vn}(t2).

 	�  ◻

Remark 1  The route {v1, v2, ..., vn} , (vk, vk+1) ∈ A, k = 1, .., n − 1 has the FIFO prop-
erty and this property can be extended for the route {v1, v2, ..., vn} in which node 
vk and node vk+1 , k = 1, .., n − 1 are directly or indirectly connected, following the 
results of Lemma 1.

Remark 2  We re-define {v1, v2, ..., vn} as the route in which every two successive 
nodes are directly or indirectly connected. Since this route has the FIFO property, 
the function f{v1,...,vn}(ts) is a nondecreasing function with respect to ts.

For the considered TDRPP problem, there are K service arcs and K − 1 transition 
paths. The complete route {a0, p1, a1, p2, a2, ..., pk, ak, ..., pK−1, aK−1} is equivalent to 
the route (v1, v2, ..., v2K , v2K+1) , if we let ak−1 = (v2k−1, v2k) (k = 1, 2, ...,K) and pk be 
the path from v2k to v2k+1 (k = 1, 2, ...,K − 1) . As a result, one can observe that f�(t) 
is a nondecreasing function when the route of arc-path alternate is considered. With 
this observation, we can prove that the complete route � has a key optimality prop-
erty, given as in Theorem 1.

Theorem 1  In the time-dependent network that satisfies the FIFO property, the tran-
sition path between every two successive service arcs in the TDRPP shortest-time 
�(ts) is the corresponding shortest-time path.

Proof  The shortest-time TDRPP route is denoted as �∗(ts) . Assuming that the k-th 
transition path pk in the shortest-time route �∗ is not the shortest-time path between 
arcs ak−1 and ak , there is a shortest-time path sk . Replace pk with sk to obtain a new 
route �(ts) . The time spent on the two routes is expressed by Equation(15):

where ṫ represents f{a0,p1,a1,...,ak−1,pk}(ts) , while ẗ represents f{a0,p1,a1,...,ak−1,sk}(ts) . 
Because sk is the shortest-time path, ẗ < ṫ holds. f{ak ,pk+1,...,pK−1,aK−1}(t) is a nonde-
creasing function with respect to t, and Equation (16) holds:

Following formula (15), we obtain f𝜋(ts) < f𝜋∗ (ts) , indicating that �∗ is not a short-
est-time route. This contradicts the assumption that �∗ is the shortest-time route. 	� ◻

(13)f{v1,v2}(t1) ≤ f{v1,v2}(t2).

(14)
{

f{v1,v2,v3}(t1) = f{v1,v2}(t1) + �v2,v3
(f{v1,v2}(t1))

f{v1,v2,v3}(t2) = f{v1,v2}(t2) + �v2,v3
(f{v1,v2}(t2)).

(15)
{

f𝜋∗ (ts) = f{a0,p1,a1,...,ak−1,pk}(ts) + f{ak ,pk+1,...,pK−1,aK−1}(ṫ)

f𝜋(ts) = f{a0,p1,a1,...,ak−1,sk}(ts) + f{ak ,pk+1,...,pK−1,aK−1}(ẗ).

(16)f{ak ,pk+1,...,pK−1,aK−1}(ẗ) ≤ f{ak ,pk+1,...,pK−1,aK−1}(ṫ).
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Theorem 1 indicates that for the FIFO TDRPP, the shortest-time transition path 
is a necessary condition to obtain the shortest-time route �∗ and the minimum travel 
time on each transition path is needed. In the following subsection, we will use this 
property to design an efficient algorithm to solve the FIFO TDRPP.

4.2 � Algorithm description

This section describes the genetic algorithm (GA) developed in this paper to solve 
the FIFO TDRPP. The first subsection gives a general description of the encoding 
procedure of our GA based on the optimality property proposed in Sect. 4.1, while 
the second subsection details how the GA is customized to solve the problem stud-
ied in this paper.

Genetic algorithms are random search techniques based on natural selection. GAs 
have been successfully applied to solve practical combinatorial optimization prob-
lems (Rabbouch et  al. 2019; Shakibayifar et  al. 2020). The GA in general uses a 
set of feasible solutions, which is defined as a population, and iteratively finds new 
high-quality solutions through the following customized operation: selection, cross-
over, and mutation. The selection operation is to pick up high-quality solutions from 
the current population and use them during the next iteration. The crossover and 
mutation operations generate new solutions to enlarge the diversity of the population 
with the aim of accelerating the convergence of the algorithm, i.e., improving local 
optimal solutions.

Encoding the solution of the considered TDRPP is complicated because we can-
not know a priori how many arcs the optimal solution contains. Therefore, we can-
not explicitly determine the solution’s structure. We propose a simplified encoding 
based on Theorem 1 for constructing the solution. Based on the built solution struc-
ture, initial solutions are generated, and then these solutions are iteratively improved 
by the formulated selection, crossover, and mutation strategies in the GA framework.

4.2.1 � Encoding

As introduced in Sect.  3, AR represents the set of K required service arcs 
( AR = {a0, a1, ..., aK−1} ). a0 and aK−1 are dummy arcs. A transition path pk is needed 
to connect two successive service arcs, and the shortest-time path p∗

k
 is needed to 

obtain the shortest-time route �∗ . The p∗
k
 is obtained by shortest-path algorithms, 

such as time-dependent Dijkstra’s algorithm (Kaufman and Smith 1993). This 
method is effective in time-dependent networks that satisfy FIFO.

The shortest-time route �∗ of the TDRPP is obtained by integrating the optimal 
sequence of service arcs and the shortest-time transition paths between every two 
successive service arcs. Here, we focus on determining the optimal sequence of 
service arcs by using the proposed genetic algorithm. The detailed encoding for 
this sequence is as follows:

(17)a0, a1, ..., aK−1,



2956	 J. Xin et al.

1 3

where the order a1, ...aK−2 represents the sequence of real service arcs. The locations 
of a0 and aK−1 are fixed in the beginning and the end of the sequence.

An encoding example (0, 1, 2, 3, 4) is presented in Fig. 3, where dummy arcs 
0 and 4 are fixed. By changing the travel order of arcs 1 and 2, we obtain another 
available sequence (0,  2,  1,  3,  4). In the next section, this sequence is used for 
the fitness evaluation of GA. Each available sequence corresponds to a complete 
TDRPP route � . The fitness evaluation is to calculate the total routing time of the 
TDRPP.

4.2.2 � Genetic algorithm

Based on the designed encoding, we now describe the framework details of our 
GA to solve the considered TDRPP.

Fig. 3   Example of encoding 
with the arc number
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Algorithm  1 gives the pseudocode of our GA. This algorithm contains the 
operations of selection, crossover and mutation based on the fitness evaluation 
of population P(iter) at each iteration. The population contains Np chromosomes, 
each of which represents a feasible sequence of service arcs. Initially these chro-
mosomes are generated randomly. The fitness of each chromosome refers to the 
total time spent f�(ts) on a feasible TDRPP route. According to Theorem 1, we 
insert the shortest-time transition path between two successive service arcs to 
obtain a complete route �∗ , and this integration is given in Fig. 4.

In Algorithm 1, one key point is to evaluate the fitness of each chromosome 
in the population. In this study, the service time �i,j(t) of each service arc(i, j) is 
different from the travel time �i,j(t) (usually greater than the travel time). In this 
way, after a given start time ts , the fitness value of each chromosome is composed 
of the service time of the service arc and the transition path time between the 
two successive service arcs. The calculation details of fitness values are given in 
Algorithm 3 in the appendix.

The selection operation is based on a tournament selection strategy (Kramer 
2017). In this strategy, population P is divided into N groups evenly and randomly to 
maintain population diversity. In each group, the chromosomes with the lowest and 
the second lowest fitness value during the current iteration iter are selected as the 
candidate chromosome for the next iteration iter + 1 . Crossover and mutation opera-
tions for the next iteration generate the remaining chromosomes in all the groups.

For the crossover operation, David’s order-based strategy is considered in each 
group since this strategy is fast and efficient, as suggested by Kramer (2017). The 
idea behind this strategy is to transmit information about relative ordering to the off-
spring. Under this strategy, the crossover operation is performed based on two chro-
mosomes with the lowest fitness values that are regarded as parents. For each group, 
the best chromosome and the second-best chromosome are used. Let c1 and c2 be the 
chromosomes with the lowest fitness value and the second lowest one, respectively. 
Two random crossover points are created, and the arc numbers between these two 
points are copied from c1 to a new chromosome in the same positions. Then, remove 
these copied numbers from c2 and insert the remaining arc numbers in c2 into the 
new chromosome in order from the second crossover point. When the second half 
of the new chromosome is filled, fill it from the first half. The crossover process is 
illustrated in Fig. 5. In particular, 0 and 9 represent dummy arcs fixed on both sides 

Fig. 4   Population composi-
tion of the proposed genetic 
algorithm
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of the chromosome. The two random crossover points are 4 and 7 so that (3, 2, 7) in 
c1 is copied to the same position on the new chromosome. Then, remove (3, 2, 7) in 
c2 , and put the number (1, 4, 5, 6, 8) into the remaining part of the new chromosome.

Regarding the mutation operation, the swap strategy is employed because it pro-
vides a new order but makes small changes to the existing order of the considered 
TDRPP solution. In this strategy, two positions in the chromosome are selected ran-
domly, and their arc numbers are swapped.

4.2.3 � Initial solution

Initial solutions are important for the performance of a metaheuristic algorithm 
(Sharma et al. 2011). To improve the performance of the proposed GA, we use the 
result of the greedy algorithm (Yu and Yang 2019), which is regarded as a simple 
and fast heuristic, as the initial solution.

The greedy algorithm is used to construct a complete sequence of service arcs 
for the considered TDRPP. Starting from the first dummy service arc, this sequence 
depends on the shortest transition path between two successive service arcs. The 
shortest-path is computed by using the Dijkstra’s algorithm. The initial solution will 
be a chromosome in the initial population of the proposed GA.

5 � Computational results

In this section, extensive numerical experiments are conducted to compare the 
proposed GA with two commonly-used metaheuristic algorithms. These three 
metaheuristic algorithms are also compared with the commercial solver by using 
different models. First of all, experimental settings are presented. Then, the compu-
tational results for small and large case studies are discussed.

5.1 � Setup of the experiments

This part introduces the experimental settings for the assessment of the proposed 
methods to solve the FIFO TDRPP. Section 5.1.1 introduces the scenarios genera-
tion and the overall experimental setup. Section 5.1.2 discusses the parameter selec-
tion of three metaheuristic algorithms.

Fig. 5   Illustrative crossover 
operation (The locations of 0 
and 9 are fixed, as they represent 
dummy service arcs)
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5.1.1 � Scenarios generation and overall setting

In this paper, the network G(V, A) consists of multiple nodes and directed arcs that 
simulate various types of streets. The network scale is the following: 5 km by 5 km 
urban area, while all the nodes are randomly generated within this range. First, a 
closed-loop, including |V| nodes, is created. The loop ensures that the generated net-
work is strongly connected. The remaining |A| − |V| arcs are randomly generated 
based on the created loop. The service arcs are randomly selected from A in different 
proportions R = (30%, 50%, 70%) . This generation method is consistent with exist-
ing research (Tan et al. 2013; Calogiuri et al. 2019). In this time-dependent network, 
each time unit represents 1 minute. The travel speed of each arc is between [0.2,0.8] 
km/min with an average value of 0.5. The speed is updated every five time units. For 
small-scale and large-scale scenarios, we set up the planning horizon (T) of 200 and 
1200 time units, and these numbers ensure finding feasible solutions. Here, we con-
sider the service time for each service arc as twice the corresponding travel time, as 
suggested by Tan et al. (2013). The detailed configurations of the studied scenarios 
are given in Table 3. The scenario names are represented by the form Ga−b , where a 
represents a specific network, and b corresponds to a different proportion of service 
arcs in the network. The time-dependent network data generated can be found in Yu 
(2020).

In the considered TDRPP, the travel time function of each arc in the network G 
is generated using the IGP modeling approach proposed in Ichoua et al. (2003). The 
IGP approach considers a continuous-time function that satisfies the FIFO property. 
In this paper, we use a discrete-time model. We directly round the continuous-time 
function generated by the IGP model and modify it through Algorithm 2 to obtain a 
discrete-time function that satisfies the FIFO.

The results on the proposed GA are compared with two commonly-used 
metaheuristic algorithms, variable neighborhood search (VNS) and ant colony opti-
mization (ACO), and a commercial solver Gurobi. These four methods are all based 
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on the proposed TSN model. For the three metaheuristic algorithms (GA, VNS and 
ACO), the result resulting from the greedy algorithm is all implemented as the initial 
solution. The method using the solver Gurobi based on the TSN model is referred to 
as TSN-G, for short. The algorithms VNS and ACO are briefly described as follows:

•	 VNS is regarded as a simple and effective metaheuristic, and the VNS con-
sists of two phases (the improvement phase for the local search and the shaking 
phase for the global search). Following the property of the FIFO TDRPP and the 
encoding method presented by (17) in Sect. 4.2.1, the general VNS discussed in 
Hansen et al. (2017) is implemented here.

•	 ACO is another commonly-used metaheuristic, which is inspired by the behavior 
of the ant colony searching for food. The considered ACO here also uses the 
property of the FIFO TDRPP and the encoding method scheme and the algo-
rithm framework can be found in Halim and Ismail (2019).

In addition to these above methods based on the proposed TSN model, the results of 
the piecewise constant (PWC) model (Tan et al. 2013) and the RPP model are also 
included for the comparison:

•	 In the PWC model, both the travel time function and the service time function 
of the TDRPP are approximated as piecewise constant functions (typically 4 
segments for each function). The optimization problem is formulated as mixed 
integer linear programming and the route is obtained by the solver Gurobi. This 
method is notated as PWC-G for short.

Table 3   Setting of case studies 
by involving various R%

Scenarios  |V| |A|

R = 30% R = 50% R = 70%

G1−1 G1−2 G1−3 5 6
G2−1 G2−2 G2−3 5 9
G3−1 G3−2 G3−3 5 12
G4−1 G4−2 G4−3 5 15
G5−1 G5−2 G5−3 5 18
G6−1 G6−2 G6−3 10 20
G7−1 G7−2 G7−3 10 30
G8−1 G8−2 G8−3 10 40
G9−1 G9−2 G9−3 20 40
G10−1 G10−2 G10−3 20 60
G11−1 G11−2 G11−3 20 80
G12−1 G12−2 G12−3 30 60
G13−1 G13−2 G13−3 30 90
G14−1 G14−2 G14−3 30 120
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•	 The RPP method transforms the TDRPP into a time-invariant RPP, following 
the idea adopted by Ichoua et  al. (2003) for the time-dependent vehicle sched-
uling problem. The time spent on each arc is averaged over the whole planning. 
The time-invariant routing problem is relatively easier to be solved than the time-
dependent routing problem. The resulting integer programming formulation is 
solved by the Gurobi solver. The integer programming formulation adopts the 
time-invariant model in Tan et al. (2013). This method is hereinafter called RPP-G.

All the numerical simulations are performed on a computer with 2.60 GHz CPU and 
8GB of memory. The solver Gurobi 9.0 is used for solving the optimization problem 
resulting from the TSN, PWC and RPP models. For each scenario, three metaheuris-
tic algorithms (GA, VNS, ACO) are computed 25 times. The maximum computa-
tion time is set to 2 hours. All the algorithms are implemented by Python 3.7, and 
the library Numba is used to speed up the computations.

5.1.2 � parameter setting of metaheuristic algorithms

For the considered metaheuristic algorithms, parameters should be selected care-
fully. In this part, we set up important parameters of the GA, VNS and ACO algo-
rithms suitable for the considered TDRPP.

In the GA, the population size and the maximum iteration number should be 
decided. We select the small/middle scenarios G2−3 , G3−3,G4−3 , G5−3 , G6−3 and G7−3 
to evaluate the fitness convergence curves under different population sizes. Figure 6 
gives the compared curves for these scenarios. From Fig.6, we can see that both the 
accuracy and convergence speed of GA increase when the population size becomes 
larger. However, as shown in Table 4, the calculation time also increases as the pop-
ulation size grows. In order to balance the calculation time and the solution quality, 
the population size and the number of iterations are set to be 360 and 400.

For a fair comparison, we use the maximum fitness evaluations (MaxFEs), which 
is a common criterion ( Huang et  al. (2019)) to terminate different metaheuristic 
algorithms. The same MaxFEs value is set when comparing the GA, VNS and ACO 
algorithms. The key parameters of the VNS and ACO algorithms are shown in 
Table 12 in the appendix. 

5.2 � Results on small‑scale cases

In this subsection, the experimental results on the small-scale scenarios are pre-
sented using six different methods. The compared results are reported in Tables 5, 6 
and 7, respectively.

Table 5 compares the averaged objective function value (i.e., the total time spent 
in the network to serve all service arcs), for each small-scale scenario presented 
in Table  3. In this table, the averaged objective values for all small-scale scenar-
ios are also included at the bottom. In Tables  5 and 8, the bold value represents 
the best solution among all the methods, and the performance of the correspond-
ing algorithm is better. The minimal and maximal values obtained from the three 
metaheuristic algorithms are recorded in Table 6.
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Fig. 6   Convergence curves of fitness values for different population sizes

Table 4   Average computation 
time of different population 
sizes in 400 iterations. (Unit: 
sec)

Scenarios Population

48 90 180 360

G2−3 1.96 3.48 6.97 13.34
G3−3 2.33 4.23 8.86 17.78
G4−3 2.20 4.43 8.68 17.15
G5−3 2.45 4.60 8.58 18.29
G6−3 8.18 15.25 29.22 56.62
G7−3 12.25 22.38 43.22 83.41
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Table 5 shows that the proposed GA is better than the other five methods. The 
algorithms based on the TSN model (GA, VNS, ACO, and TSN-G) provide better 
objective values than the methods using the PWC model and the RPP model. This 
means that considering time dependence in RPP can further reduce the value of the 
objective function. The TSN-G method can return optimal solutions by using the 
solver Gurobi. However, the TSN-G method fails to return feasible solutions within 
2 hours as the scenario scale becomes larger (i.e., G3−2 , G3−3 , G4−2 , G4−3 , G5−2 , and 
G5−3 ). For these cases where the TSN-G method can find the optimal solution, the 
GA and VNS algorithms reach the same objective value. The GA and VNS can give 
a high-quality solution for all small-scale cases. The ACO, in general, outperforms 
the RPP-G and PWC-G methods, but sometimes gives a poor solution.

Table  6 records the minimal/maximal value of three metaheuristic algorithms 
(GA, VNS, and ACO). This table indicates that the proposed GA provides better 
minimal or maximal values than the VNS and the ACO when the solver Gurobi can-
not return the optimal solution.

Table 7 presents the computation times of the different methods for the reported 
small-scale cases. Table 7 shows that the RPP-G method has considerably shorter 
computation times compared to the other algorithms as the problem complex-
ity is reduced. The TSN-G method takes the longest computation time to get the 
exact optimal solution. The computation time of the PWC-G is between the RPP-G 

Table 5   Averaged objective 
value of different methods for 
the small-scale cases. (Units: 
Minutes)

Model TSN PWC RPP

Scenarios Algorithm

GA VNS ACO TSN-G PWC-G RPP-G

G1−1 45.00 45.00 45.00 45 45 45
G1−2 52.00 52.00 52.00 52 52 52
G1−3 62.00 62.00 62.00 62 62 62
G2−1 67.00 67.00 67.00 67 67 67
G2−2 67.00 67.00 67.00 67 67 75
G2−3 78.00 78.00 90.20 78 81 81
G3−1 53.00 53.00 53.00 53 53 53
G3−2 87.00 87.00 87.00 – 100 102
G3−3 95.00 95.00 95.52 – 109 112
G4−1 72.00 72.00 95.00 72 95 95
G4−2 119.00 119.00 125.00 – 144 151
G4−3 131.12 131.60 132.00 – 157 156
G5−1 95.00 95.00 95.00 95 99 100
G5−2 137.00 137.00 153.40 – 152 166
G5−3 145.60 146.80 147.00 – 160 179
Average 87.05 87.16 91.07 – 96.27 99.73
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Table 6   The minimal and 
the maximal values of three 
metaheuristic algorithms for 
the small-scale cases. (Units: 
Minutes)

Scenarios Algorithm

GA VNS ACO

(min,max) (min,max) (min,max)

G1−1 [45,45] [45,45] [45,45]
G1−2 [52,52] [52,52] [52,52]
G1−3 [62,62] [62,62] [62,62]
G2−1 [67,67] [67,67] [67,67]
G2−2 [67,67] [67,67] [67,67]
G2−3 [78,78] [78,78] [81,91]
G3−1 [53,53] [53,53] [53,53]
G3−2 [87,87] [87,87] [87,87]
G3−3 [95,95] [95,95] [95,96]
G4−1 [72,72] [72,72] [95,95]
G4−2 [119,119] [119,119] [124,126]
G4−3 [129,132] [129,136] [132,132 ]
G5−1 [95,95] [95,95] [95,95]
G5−2 [137,137] [137,137] [151,155]
G5−3 [142,147] [144,148] [147,147]
Average [86.67,87.20] [86.80,87.53] [90.20,91.33]

Table 7   Averaged computation times of different methods for the small-scale cases. (Units: sec)

Model TSN PWC RPP

Scenarios Algorithm

GA VNS ACO TSN-G PWC-G RPP-G

G1−1 2.052 2.512 3.592 17.352 0.011 0.001
G1−2 2.861 2.965 6.035 6.925 0.030 0.001
G1−3 2.234 2.891 6.852 16.035 0.064 0.001
G2−1 3.488 3.744 7.551 127.341 0.069 0.001
G2−2 3.845 3.932 9.350 266.833 0.271 0.001
G2−3 3.476 3.841 16.018 86.107 0.355 0.002
G3−1 2.745 2.911 7.992 36.419 0.194 0.001
G3−2 4.863 5.293 18.482 – 2.163 0.002
G3−3 4.834 4.771 25.567 – 5.698 0.003
G4−1 3.235 3.296 8.612 240.945 0.167 0.001
G4−2 4.223 4.756 26.582 – 2.055 0.003
G4−3 4.516 5.314 36.882 – 10.421 0.004
G5−1 3.796 4.396 13.662 972.239 1.025 0.002
G5−2 4.931 5.581 33.012 – 18.894 0.004
G5−3 4.730 5.442 59.857 – 1005.926 0.007
Average 3.722 4.110 18.670 – 69.823 0.002
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method and the TSN-G method. The proposed GA uses less than 5 seconds of com-
putation time for all small-scale scenarios. The computation time of VNS is close to 
that of GA, while the ACO algorithm computes longer than the GA and the VNS. 
The computation time of ACO increases more quickly than the GA and the VNS as 
the case scale grows.

5.3 � Results on large‑scale cases

This part compares the experimental results concerning the large-scale scenarios 
( G6 − G14 ). The computational results of the compared methods are reported in 
Tables 8, 9 and 10. Because the TSN-G method cannot find any solution within the 
maximum computation time, the results of the TSN-G method are not listed in these 
tables.

Table 8 compares the averaged objective function values of five different meth-
ods (i.e., the developed GA, VNS, ACO, RPP-G, and PWC-G) for each large-scale 
scenario. As the scale of the scenario increases, the problem becomes increasingly 
complex. The proposed GA also has shorter objective values on average than the 
other methods. The PWC-G method obtains a solution only for a small part of the 
large-scale scenarios. Since the RPP-G method does not consider the time depend-
ence, a feasible solution can always be given in large-scale scenarios. However, in 
large-scale cases, the objective function values obtained by the three metaheuris-
tic algorithms (GA, VNS, and ACO) considering time dependence are significantly 
better than those obtained by the RPP-G method. For the three metaheuristic algo-
rithms, the proposed GA has better objective values for most large-scale cases. For 
a few cases, the ACO algorithm has a slightly smaller objective value than the pro-
posed GA, but the computation time of the ACO is significantly longer than the 
other two metaheuristic algorithms. Furthermore, the proposed GA has the best 
average performance.

Table  9 reports the minimal and maximal values obtained from the three 
metaheuristics. This table shows that the proposed GA and the VNS have better per-
formance for most cases concerning this criterion. In general, the proposed GA has 
a lower minimal or maximal objective against the VNS and the ACO. It is noted that 
the ACO has lower minimal or maximal objective values for a few cases (e.g., G7−3 ), 
than the proposed GA and the VNS. However, on average, the proposed GA outper-
forms the VNS and the ACO.

Table 10 presents the computation times of different algorithms for large-scale 
cases. Table 10 shows that the proposed GA provides high-quality solutions within a 
reasonable computation time. The computation time of all compared methods grows 
as the case becomes larger. In Table 10, the computation time of the RPP-G is very 
short, but the solution quality is the worst (as shown in Table 8). The computation 
times of the proposed GA and the VNS are close to each other and considerably 
shorter than the ACO algorithm.
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5.4 � Summary of experimental results

In this section, we summarize the experimental results as follows: 

1.	 The experimental results show that the RPP-G method has the fastest solution 
speed, but this does not consider the time dependence. Therefore, this method 
cannot generate high quality solutions for the considered TDRPP.

Table 8   Averaged objective 
value of different methods for 
the large-scale cases. (Units: 
Minutes)

Model TSN PWC RPP

Scenarios Algorithm

GA VNS ACO PWC-G RPP-G

G6−1 126.00 126.00 126.96 126 132
G6−2 131.04 131.00 134.00 160 136
G6−3 170.96 175.80 178.40 185 184
G7−1 119.00 119.12 119.00 129 119
G7−2 175.96 180.84 181.00 – 234
G7−3 267.80 270.16 264.92 – 307
G8−1 142.24 142.48 143.84 156 154
G8−2 236.12 238.32 247.20 – 312
G8−3 345.72 354.12 338.16 – 432
G9−1 224.56 213.60 300.96 227 227
G9−2 290.40 296.16 297.10 – 343
G9−3 376.35 385.76 369.00 – 401
G10−1 219.92 222.32 222.80 – 240
G10−2 363.52 367.52 364.40 – 433
G10−3 559.04 563.08 548.60 – 605
G11−1 301.88 302.08 301.90 – 348
G11−2 589.00 601.48 571.40 – 672
G11−3 819.12 847.40 820.60 – 897
G12−1 374.60 367.76 361.00 – 410
G12−2 454.08 463.24 454.20 – 525
G12−3 675.20 703.04 703.60 – 761
G13−1 443.52 454.16 452.80 – 513
G13−2 691.76 716.84 680.00 – 781
G13−3 1015.52 1021.32 1041.60 – 1093
G14−1 469.84 478.44 472.00 – 496
G14−2 779.04 784.92 799.00 – 857
G14−3 1075.84 1085.76 1104.00 – 1146
Average 423.63 430.10 429.56 – 472.52
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2.	 The PWC-G method approximates the time function of each arc of the TDRPP 
to a piecewise constant function. The results show that this method obtains 
better objective values than the RPP-G method. However, the objective value 
obtained by this method still cannot compete (in terms of solution quality) with 
the metaheuristics based on the TSN model.

3.	 The TSN-G method obtains the optimal objective value in the small-scale cases, 
but this method cannot find feasible solutions for the large-scale cases.

Table 9   The minimal and the 
maximal values of different 
methods for the large-scale 
cases. (Units: Minutes)

Scenarios Algorithm

GA VNS ACO

(min,max) (min,max) (min,max)

G6−1 [126,126] [126,126] [126,129]
G6−2 [131,134] [131,131] [134,134]
G6−3 [170,179] [170,182] [176,180]
G7−1 [119,119] [119,122] [119,119]
G7−2 [171,187] [171,189] [181,181]
G7−3 [257,277] [259,282] [254,275]
G8−1 [142,143] [142,143] [143,152]
G8−2 [230,248] [231,252] [237,253]
G8−3 [332,364] [340,376] [326,349]
G9−1 [214,226] [212,225] [291,306]
G9−2 [284,295] [284,315] [286,306]
G9−3 [365,391] [365,421] [366,372]
G10−1 [218,233] [218,236] [222,226]
G10−2 [351,376] [352,382] [356,367]
G10−3 [538,565] [535,575] [530,557]
G11−1 [285,312] [289,314] [294,302]
G11−2 [559,614] [581,633] [565,584]
G11−3 [778,853] [807,892] [813,830]
G12−1 [361,385] [361,388] [361,361]
G12−2 [435,473] [435,500] [444,462]
G12−3 [652,696] [666,728] [684,720]
G13−1 [423,472] [434,473] [443,461]
G13−2 [674,715] [693,767] [680,680]
G13−3 [986,1032] [988,1034] [1024,1047]
G14−1 [457,485] [455,496] [467,479]
G14−2 [737,809] [757,809] [790,805]
G14−3 [1043,1103] [1051,1126] [1100,1114]
Average [408.81,437.48] [413.78,448.78] [422.67,464.48]
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4.	 The proposed GA obtains the same optimal solution provided by the TSN method 
for the small-scale cases, and the computation time is less than 5 seconds. For the 
large-scale cases, the proposed GA outperforms the VNS and the ACO for most 
cases and has the strongest comprehensive performance in terms of the solution 
quality and the computation time. (i.e. the proposed GA outperforms the other 
algorithms when looking at the average results)

Table 10   Averaged computation 
times of the different methods 
for the large-scale cases. (Units: 
sec)

Model TSN PWC RPP

Scenarios Algorithm

GA VNS ACO PWC-G RPP-G

G6−1 13.412 15.042 48.691 1.114 0.047
G6−2 15.121 16.621 105.914 7.702 0.060
G6−3 13.024 18.347 194.214 35.655 0.110
G7−1 11.665 14.652 86.492 7.251 0.070
G7−2 16.597 20.893 228.491 – 0.117
G7−3 19.856 25.142 411.372 – 0.194
G8−1 14.951 18.417 146.332 24.016 0.108
G8−2 23.587 27.649 373.945 – 0.224
G8−3 25.921 33.992 714.635 - 0.293
G9−1 56.062 61.289 1236.041 63.95 0.139
G9−2 81.253 88.951 1221.761 – 0.219
G9−3 110.831 113.251 2268.591 – 0.395
G10−1 91.285 91.674 1017.372 – 0.245
G10−2 122.291 122.256 2664.914 – 0.497
G10−3 153.950 170.412 5102.382 – 0.969
G11−1 94.967 106.634 1917.673 – 0.511
G11−2 128.181 143.962 4591.321 - 1.047
G11−3 185.112 230.452 7200 – 1.775
G12−1 171.665 173.427 1956.714 – 0.328
G12−2 228.132 226.381 5137.281 – 0.641
G12−3 360.138 340.091 7200 – 1.141
G13−1 257.675 286.112 4496.481 – 1.201
G13−2 346.856 408.982 7200 – 1.845
G13−3 505.279 507.271 7200 – 5.257
G14−1 275.675 300.912 7200 – 1.423
G14−2 385.142 380.962 7200 – 5.984
G14−3 498.129 494.531 7200 – 21.264
Average 155.806 164.382 3122.986 – 1.708
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6 � Conclusion and future research

In this paper, a new time-space network model is proposed for addressing time-
dependent rural postman problems (TDRPPs). The proposed model is based on the 
idea of the arc-path alternation. This model can represent any form of travel time 
function and is thus considered as a more general model than the existing models. 
Based on a time-space network representation, an integer programming formulation 
is established to solve the studied problem. The tested scenarios become computa-
tionally intractable as the number of variables and constraints grows considerably 
(see more details in the Appendix).

We investigate the FIFO property of the considered time-dependent network and 
a crucial optimality property of the FIFO TDRPP. Based on the optimality prop-
erty, a well-customized genetic algorithm (GA) is proposed to efficiently solve the 
considered TDRPP. Comprehensive simulation experiments have been conducted 
to show the effectiveness of the proposed GA on different types of scenarios. The 
simulation results show that our GA provides high-quality solutions in a reasona-
ble computation time compared to two metaheuristic algorithms (i.e., the VNS and 
ACO algorithms) and the commercial solver Gurobi when considering the different 
investigated models.

Future research should extend the considered single-vehicle TDRPP problem into 
a TDRPP with multiple vehicles. Furthermore, the time-space network model devel-
oped for the TDRPP could be integrated with dynamic discretization discovery (a 
framework for solving routing problems based on discrete-time networks) proposed 
in Boland and Savelsbergh (2019) to possibly find the exact solution to the studied 
routing problem.

Appendix

•	 The total time spent f�(ts) can be calculated by Algorithm 3. In Algorithm 3, the 
term {vk

1
, vk

2
, ..., vk

nk
} represents the node sequence corresponding to transition 

path pk , while nk represents the number of nodes included in pk.
•	 The number of constraints and decision variables of the proposed TSN model for 

each scenario is provided in Table 11.
•	 A description of the VNS and ACO algorithms used in this paper can be found 

in Hansen et  al. (2017); Halim and Ismail (2019). In order to compare with 
GA fairly, the maximum fitness evaluation times of the two algorithms are 
144000(360*400). The neighborhood structure used by the VNS algorithm in the 
shaking and improvement procedure is “2-opt move”, “Insertion-1 move” and 
“Insertion-2 move”. The ant colony size and iteration number of the ACO algo-
rithm are 360 and 400, which are consistent with those of the GA. The other 
parameters of ACO are optimized by the cross validation, and the specific param-
eters are shown in Table 12.
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Table 11   The number of constraints and decision variables corresponding to the time-space network 
model

Scenarios Constraints Variables Scenarios Constraints Variables

G1−1 42 8000 G8−1 292 907200
G1−2 53 11000 G8−2 468 1636800
G1−3 65 14400 G8−3 644 2520000
G2−1 53 14000 G9−1 552 907200
G2−2 65 18000 G9−2 888 1636800
G2−3 90 27200 G9−3 1224 2520000
G3−1 66 21600 G10−1 804 1920000
G3−2 90 32000 G10−2 1308 3532800
G3−3 114 44000 G10−3 1812 5491200
G4−1 66 25200 G11−1 1056 3307200
G4−2 114 50000 G11−2 1728 6148800
G4−3 138 64800 G11−3 2399 9604800
G5−1 78 35000 G12−1 1184 1920001
G5−2 126 63800 G12−2 1928 3532801
G5−3 174 99000 G12−3 2672 5491201
G6−1 160 268800 G13−1 1742 4141200
G6−2 248 460800 G13−2 2857 7726800
G6−3 336 691200 G13−3 3973 12090000
G7−1 226 541200 G14−1 2299 7204800
G7−2 358 958800 G14−2 3787 13540800
G7−3 490 1462800 G14−3 5275 21259200
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