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Abstract—During the perceptual learning of a mobile robot,
how to improve the efficiency of its behavior decision is a great
challenge. The existing methods suffer from the less flexibility
and low efficiency. This paper proposes a novel methodology
to address these problems. It mimics the principle that the
human’s brain can still think, even when he/she neither receives
any sensory stimulus nor performs any action, during off-task
process, a gated self-organization mechanism is used to trigger
the “brain” of the mobile robot to work, analyze the scenarios
that it encountered in the former tasks to decide the best
moving direction, then store the sensed scenario information
by means of the lateral excitation of the internal neurons in
a developmental network, and set up the weight connections
from the internal area to high-level decision-making area of the
developmental network. In the following perceptual learning, if
the robot encounters a similar scenario, it can make a better and
faster behavior decision. Therefore, this methodology can greatly
enhance the efficiency of behavior decision with the limited
training samples, without re-training in facing a new scenario.
Most importantly, this methodology makes the robot continuously
improve its intelligence through the autonomous learning, even in
off-line state. Extensive simulation and experiment results of the
mobile robot perceptual learning demonstrate its potential. Since
it is task-nonspecific, the same learning principles are potentially
suitable for other fields. To the best of our knowledge, it is
the first trial to apply the transfer learning through the lateral
excitation mechanism of internal neurons to the robot field with
the emergent representation.

Index Terms—Behavior decision, off-task process, lateral ex-
citation, developmental network, gated self-organization mecha-
nism, transfer

I. INTRODUCTION

DURING the perceptual learning (PL) of a mobile robot,
how to enhance the efficiency of its behavior decision,

will generate great influence on its following behavior. The
core problem for a mobile robot to make future behavior
decision is how to determine the moving direction, which will
certainly affect its next behavior decision.

To decide the moving direction of the mobile robot, a
substantial amount of research has been employed [11], [26].
Generally, these research can be divided into two categories:
conventional methods and intelligent methods. A large number
of traditional behavior decision methods, such as cell de-
composition algorithm [43], roadmap approach [30], artificial

Dongshu Wang is with School of Electrical Engineering,
Zhengzhou University, Zhengzhou, Henan, 450001, China. (email:
wangdongshu@zzu.edu.cn)

Kai Yang is with Henan Branch of China Mobile Communications Group
Co. Ltd, Zhengzhou, Henan, 450021, China. (e-mail: 1092813671@qq.com)

Jianbin Xin is with School of Electrical Engineering, Zhengzhou Uni-
versity, Zhengzhou, Henan, 450001, China. Corresponding author (e-mail:
j.xin@zzu.edu.cn).

potential field approach [31], mathematical programming [6],
probability navigation function [8], hybrid approaches [38],
and other methods [2], have been used in the mobile robot.
But these methods have such main drawbacks as high com-
putational cost, demanding for precise information about the
environment, requiring an accurate sensing mechanism for
real-time implementation, specific behavioral rules designed
for particular task, namely, once the task changes, new rules
have to be re-designed, etc. Therefore, they are less preferred
in real-time implementation.

Recently, with the rapid development of the intelligent
technology, many intelligent approaches have been widely
used in mobile robot’s behavior decision-making, such as
genetic algorithm [34], fuzzy full-state feedback control [57],
particle swarm optimization [46], [47], neural network [7],
[36], firefly algorithm [33], artificial immune system [3], krill
herd algorithm [37], ant colony optimization [20], artificial
bee colony algorithm [25], grey wolf colony optimization
[37], bacterial foraging optimization algorithm [13], cuckoo
search algorithm [39], shuffled frog leaping algorithm [12],
invasive weed optimization [32], harmony search algorithm
[21], bat algorithm [42], etc. However, just like the conven-
tional approaches, these intelligent methods also exist several
disadvantages, such as longer computational time, complicat-
ed design, necessary learning phase and numerous learning
samples, requiring large memory, etc.

Generally speaking, the existing behavior decision-making
approaches of the mobile robot suffer from the common limi-
tations: these approaches generally solve the robot behavior
decision-making in particular scenarios, once the scenario
changes, the behavior decision strategy needs re-designing,
leading to a poor flexibility. Furthermore, these methods
generally need considerable computation cost, resulting in low
efficiency [10].

Since the scenarios that the robot percepts have certain
similarity, in the following perceptual learning, it may en-
counter a similar scenario. If the robot can learn from its
previous experience, it will certainly promote its efficiency
of the behavior decision.

A. Transfer in the PL

Repeated performance of tasks causes the long-lasting im-
proved sensitivity to the trained input, a phenomenon called
perceptual learning (PL), which investigates how experience
can alter the manner we perceive sights, sounds, smells,
tastes, and touch [9]. One of the trademark characteristics of
perceptual learning is its stimulus and specificity for different
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aspects of task and stimulus configuration, such as stimulus
orientation or curvature, retinotopic position and ocularity.

A large number of recent researches, however, illustrate that
specificity is not an innate feature of the perceptual learning,
but a function of experimental paradigms [9], [35]. For in-
stance, a substantial amount of researches had been done by
Yu and his colleagues who proposed novel “double training”
method to make visual perceptual learning of different tasks
transfer to untrained positions and orientations/directions. Vi-
sual perceptual learning can transfer to a novel position if this
novel position is trained in a secondary task which has no
influence on the performance of primary learning task [48],
[49], [54]. Sometimes when double training is executed at the
same position, learning can also transfer to new positions [50].
Moreover, learning also transfers to a novel direction when
the second task is performed at the novel direction to remove
feature specificity [55], [56], [58]. Their works indicate that
position specificity is not necessarily a real characteristic of
the direction learning, and visual perceptual learning is at
least in some situations a high-level procedure which occurs
beyond the retinotopic and feature selective visual areas. So
these researches elaborate on the current neurophysiological
argue about the brain sites of orientation learning and help to
delineate the general principle of the perceptual learning.

Uka et al. [44] investigated whether behavioral sensitivity
and neuronal features transfer across visual fields through
the depth-discrimination task, behavioral results with two
monkeys suggested that although learning was specific to
the trained hemifield, the transfer learning which caused the
fast learning at the new position occurred across the visual
hemifields. They further presented that even neuronal features
could transfer across hemispheres. Using an orientation dis-
crimination task, Jeter et al [14] demonstrated that specificity
followed after extensive training, while the earliest stages of
perceptual learning exhibited substantial transfer to a novel
position and an opposite direction.

Moreover, based on the integrated re-weighting theory mod-
el of PL, Sotiropoulos et al [41] even presented a model
including an important characteristic: dynamic weighting of
retinotopic position specific vs position-independent represen-
tations. This dynamic performance-monitoring model unified a
substantial amount of psychophysical data on transfer of PL,
such as the short-vs-long staircase effect, and many results
from the double training literature.

More transfer of learning have been observed in early
stage of training with shorter training sessions [1], using
coarse discrimination [15], change in learning rate [17], pre-
testing and subliminal exposure [22], double training [24],
TPE training [59], or mixed different stimuli and tasks [60].

B. Off-task Process

Off-task processes in the developmental network are the
neural interactions during the times when the network is not
attending to any stimulus and task [40]. As for the human
being, in the off-task process, he/she gets no input stimulus
and does not output any behavior, but the human brain can still

work, playback and re-study the past things by the memory
replay mechanism [4], [5], [18]. This re-study can generate a
guiding role on his/her follow-up behavior. Fig. 1 provides a
general pattern of the transfer in PL: training a perceptual task
in the 1st condition accompanied by exposure to the second
condition causes the transfer of learning effects to the second
condition [40]. Here, exposure means receiving (being exposed
to) any sensory stimulus that has at least one characteristic
(such as location, orientation, etc) in common with the transfer
condition [40]. The transfer model proposed in this work is
motivated by this general pattern.

Training skill in 

the first condition +
Exposure to the 

second condition

Transfer to the 

second condition

Fig. 1. General mode observed in transfer studies.

C. Contribution of This Work

Recent neurophysiological evidences [23], [61], [27], [19]
show that perceptual learning is associated with the neuronal
changes not in the sensory cortical regions, but in higher
regions correlated to decision making. For instance, Law and
Gold [23] observed that in discriminating the motion direction,
behavioral enhancement was associated with the plasticity of
the neurons in lateral intraparietal cortex (LIP, a decision area),
instead of the sensory area MT (middle temporal cortex) that
was also active during the task.

Since PL is associated with neuronal changes in higher
regions correlated to the decision making, it is very natural
to generate an idea to introduce the PL to the behavior
decision-making of mobile robot. Unfortunately, till now, PL is
widely used in the pattern recognition fields [14], [44], [48],
while a few in the robot field. Our previous work [45] has
studied the effect of PL on the navigation of an artificial
agent, combining with the reinforcement learning through
dopamine and serotonin. This work will investigate the transfer
mechanism of the moving direction of a mobile robot when
it is exposed in a similar scenario during an environment
exploration, which is a typical PL process.

Simulating the thinking principle of the human brain during
the off-task process, in the intervals of the PL, i.e., neither
perceptual input nor action output, in this paper, a gated
self-organization mechanism is used to trigger the “brain” of
the mobile robot to work, i.e., to re-analyze and investigate
the scenarios that it met in former tasks, and determine
the best moving direction corresponding to that scenario.
Then, it establishes connection between the perceived scenario
information and the behavior decision (determining the best
moving direction in this work), through the weight connections
of the developmental network (DN).

Moreover, the lateral excitation mechanism of the internal
neurons of the DN is used to enroll more surrounding neurons
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to store the similar scenario information. In the subsequent en-
vironmental PL, when the robot encounters a similar scenario,
the robot can make a better and faster decision and transfer to
the best moving direction, in accordance with the knowledge
learned in the previous off-task processes.

Therefore, this methodology can improve the accuracy and
efficiency of the behavior decision with the limited training
samples, and without re-training in facing a new scenario,
embodying the capacity of autonomous mental development.
Furthermore, this methodology is task-nonspecific, and can be
used into other perceptual learning. As far as we know, it
is the first work to use the transfer mechanism by means of
the lateral excitation of the internal neurons in a DN to the
behavior decision-making of a robot.

The following sections are arranged as below. Section II
introduces the DN and architecture of the motivated devel-
opmental network (MDN). Section III illustrates the principle
of the off-task process and Section IV explains the principle
of transfer learning. Section V and section VI design three
simulations and real experiment to demonstrate the potential
of the proposed method. Section VII concludes this paper with
a discussion on future work.

II. THEORY OF DEVELOPMENTAL NETWORK

A. Algorithm of the Developmental Network

Developmental Network (DN) is an emergent network
which can serve as a model of the brain-mind that lives
and learns autonomously in the open-ended, dynamics, real
physical world [51], [52], [53]. In general, a simplest DN has
three layers, the internal layer Y as a “bridge”, its sensory
layer X as a “bank” relative to the Y and its motor layer Z
as another “bank” relative to Y , as illustrated in Fig. 2. In
principle, the layer X can model any sensory modality (e.g.,
vision, audition, and touch, etc). The motor layer Z serves as
input or output ports. When the DN is in a status of supervised
learning, i.e., training, Z serves as the input layer. Otherwise,
Z gives a motor output to drive effectors to act on the external
world.
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Fig. 2. Schematic diagram of the basic DN. Source: from [52].

The detailed training procedure of the DN can be described
as follows.

1) At time t = 0, for each layer A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector r, where
V contains all the synaptic weight vectors and G stores all the
neuronal ages.

2) At time t = 1, 2, ..., for each layer A in {X,Y, Z}, do
the following two steps repeatedly forever:

a) Every layer A computes using the layer function f

(r′, N ′) = f(b, t, N) (1)

where f is the unified layer function described in the following
equation (2), b and t are layer’s bottom-up and top-down
inputs from current network response r, respectively; and r′

is its new response vector.
b) For each layer A in {X,Y, Z}, A replaces: N ← N ′ and

r← r′.
Each neuron in layer A has a weight vector v = (vb,vt),

corresponding to the layer input (b, t), if both bottom-up part
and top-down part are applicable to the layer. Otherwise, the
missing part of the two should be dropped from the notation.
Its pre-response energy is the sum of two normalized inner
product:

r(vb,b,vt, t) =
vb
||vb||

· b

||b||
+

vt
||vt||

· t

||t||
= v̇ · ṗ (2)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ).

To simulate the lateral inhibition (winner takes all) within
each layer A, only top-k winners fire and update. Considering
k = 1, the winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t) (3)

where c is the neuron number in the layer A. For k = 1, only
the single winner fires with response value yj = 1 and all
other neurons in A do not fire with response value yj = 0.

All the connections in the DN are learned incrementally
based on Hebbian learning — co-firing of the pre-synaptic
activity ṗ and the post-synaptic activity y of the firing neuron.
Here, the layer Y is taken as an example, since other layers
learn in a similar way. If the pre-synaptic end and the post-
synaptic end fire together, the synaptic vector of the neuron
has a synapse gain yṗ. Other non-firing neurons do not modify
their weights. When a neuron j fires, its weight is updated by
a Hebbian-like mechanism:

vj ← ω1(nj)vj + ω2(nj)yjṗ (4)

where ω2(nj) is the learning rate depending on the firing
age nj of the neuron j and ω1(nj) is the retention rate with
ω1(nj)+ω2(nj) ≡ 1. The simplest version of ω2(nj) is 1/nj .
The age of the winner neuron j is incremented nj ← nj + 1.

B. Motivated Developmental Network (MDN)

Fig. 3 shows the architecture of the MDN with the serotonin
and dopamine systems. Functions of dopamine and serotonin
have not been completely understood [16], since serotonin and
dopamine have different effects in different parts of human
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body [28]. In this paper, roles of the dopamine and sero-
tonin are associated with reward and punishment, respectively.
While those of the glutamate and GABA are linked with
excitatory signal and inhibitory signal, respectively.
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Fig. 3. Schematic diagram of the MDN with the serotonin and dopamine
subsystems.

As illustrated in Fig. 3, in the MDN, the sensory layer X
can be represented as X=(Xu, Xp, Xs), where Xu represents
an unbiased input, while Xp and Xs denote the pain input and
sweet input, respectively. Fig. 3 shows that Raphe Nuclei (RN)
and Ventral Tegmental Area (VTA) can respectively release the
serotonin and dopamine, which can diffuse into other parts of
the human brain. RN and VTA can be regarded as the serotonin
and dopamine versions of Xp and Xs, respectively.

Similarly, layer Y can also be denoted by three sub-layers:
Y =(Yu, Yp, Ys). Neurons in layers Yp and Ys receive the inputs
from Xp and Xs, respectively. Neurons in Yu have glutamate,
serotonin and dopamine receptors. The role of GABA neuro-
transmitters is simulated by the top-k competition. Considering
the roles of the serotonin and dopamine, the new learning rate
of the neurons in layer Y can be depicted as follows [45]:

ω2(nj) = min((1 + αRN + αV TA)
1

nj
, 1) (5)

where αRN and αV TA represent the parameters associat-
ed with RN and VTA, respectively. If the serotonin and
dopamine do not work in the neuromodulatory system, then
αRN=αV TA=0, hence the new learning rate will return its
original form ω2(nj) = 1/nj . Since the learning rate ω2(nj)
and retention rate ω1(nj) of the neurons meet the condition
of ω1(nj)+ω2(nj)≡1, generally the learning rate ω2(nj) ≤ 1.
In Eq. (5), if (1 + αRN + αV TA)/nj >1, the function “min”
is used to limit its value.

The motor layer Z can be denoted by a series of neurons
Z = (z1, z2, · · · , zm), where m is the number of the neuron in
layer Z. Corresponding to the three sub-layers in layers X and

Y , each zi also has three neurons, i.e., zi = (ziu, zip, zis), as
shown in Fig. 3, where ziu, zip and zis (i=1,2,· · · ,m) represent
the unbiased, pain and sweet motors, respectively. Whether
an action i is activated depends not only on the response of
ziu, but also on those of zip and zis. zip and zis show how
much negative value and positive value are associated with
the i-th action, respectively, according to the past experience.
They form a triplet for the pre-response energy of each motor
neuron i, coming from glutamate, serotonin and dopamine,
respectively.

Modeling the motor neuron’s internal interactions of the
three different types of neurotransmitter, the total pre-response
energy of a motor neuron is determined as follows:

zi = ziu(1− αzip + βzis) (6)

where both α and β are positive constants.
Then the j-th motor neuron with the highest pre-response

energy can be activated according to the top-k competition
mechanism:

j = arg max
1≤i≤m

{zi} (7)

Other neurons in layer Z cannot fire.
As for the MDN, its detailed description, such as the

learning rate of internal neurons, etc, can be found in [45].

III. LEARNING IN THE OFF-TASK PROCESS

In the off-task process, there is neither sensory stimulus nor
behavior output, and the central nervous system of the mobile
robot, i.e., the MDN, is in a state of rest. In this state, how to
trigger the central nervous system to work again, is the first
problem to be investigated in this part. In this section, a gated
self-organization mechanism is used to address this problem.

Since there is no sensory stimulus and behavior output in the
off-task processes, in order to trigger the MDN to work again,
the MDN must have an external input, either from the sensory
layer X or motor layer Z. But there is no sensory input from
the layer X, therefore, we have to design a manner to realize
an input from the motor layer. Considering that there is certain
similarity among the scenes the agent explored, the motor
neurons highly activated in the previous works have higher
probabilities to fire again. According to this principle, a gated
self-organization mechanism as explained in detail below, is
designed, namely, in the time period set, the motor neurons
with higher activated times in previous work are more likely to
be selected as the activated neurons. The motor neurons with
their fire times higher than the threshold are selected to be the
input to the MDN to trigger it to work again during the off-task
processes, then the agent re-studies the scenes encountered
in the previous work and determines the optimal behavior
decision by the lateral excitation of the internal neurons of
the MDN.

A. The Gated Self-organization Mechanism

Whether or not a motor neuron can be activated in the off-
task processes is determined by a function of the amount of
recent exposure of the MDN to the concept that the neuron
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denotes. In this paper, the concept corresponds to the moving
direction of the agent.

Probability of a motor neuron activated in the off-task
processes, under the condition of no other neuron activated in
the same layer, can be expressed by a monotonically increasing
function of the amount of recent exposure to the corresponding
concept, i.e.,

p(zi = 1|∃j 6= i, zj = 1) = 0

p(zi = 1|∀j 6= i, zj = 0) =
2

1 + e−γi
− 1 (8)

where γi ≥ 0 represents the amount of recent exposure to
the concept that the ith motor neuron denotes. To simulate the
lateral inhibition in the motor layer, the conditional probability
in Eq. (4) represents the lateral inhibition in the motor layer,
and it assures that a motor neuron can not be activated if there
is already another neuron activated in the same layer.

Concretely, the amount of exposure to the ith concept, γi,
in Eq. (4), can be calculated as follows:

γi =
nzi
8∑
i=1

nzi

(9)

where nzi represents the activated times of the ith neuron in

layer Z, and
8∑
i=1

nzi denotes the total activated times of the

motor neurons in layer Z, where 8 represents the 8 types of
movement directions that the agent can choose, as explained
in the following Section IV A.

The principle of the gated self-organization mechanism can
be depicted as follows: ranking the motor neurons in descend-
ing order in light of the activated probabilities, then activate
the former k neurons with nonzero probabilities. For instance,
assuming k=3, it is assumed that the activated probabilities of
the former three motor neurons are nonzero, and the order
of the three motor neurons according to their probabilities
is [neuron1, neuron2, neuron4], then the MDN algorithm
circulates the following process three times: use the sequence
of the activated motor neurons as the input from layer Z to
layer Y , activate the internal neurons in layer Y in terms of the
top-k competition mechanism, perform the lateral excitation of
the internal neurons to activate surrounding neurons, construct
the new synaptic weights among the neurons in layers Y and
Z. Here the first circulation of the MDN algorithm is used to be
an example to explain the process clearly. The input from layer
Z to layer Y can be denoted as z1=[1, 0, 0, 0, 0, 0, 0, 0, 0],
then the pre-response energies of the internal neurons in layer
Y can be calculated, and the internal neurons with nonzero
pre-response energies is activated, all these activated internal
neurons are associated with the first movement direction of the
agent, thus they only link with the first neuron, namely, z1 in
layer Z. Then pre-response energies of these internal neurons
are multiplied by a linearly declining function in terms of the
rank of the neurons:

k − ri
k

zi → zi (10)

where 0 ≤ ri < k denotes the rank of the neuron in terms
of the pre-response energy, and the internal neuron with the
highest pre-response energy has the rank of 0, the neuron with
the second highest pre-response energy has the rank of 1, and
the rest can be deduced in the same manner.

B. Lateral Excitation in the Internal Neurons of the MDN

During the off-task process, these reactivated motor neurons
make up the top-down input of the MDN, and the synaptic
weights from the motor layer Z to internal layer Y in the
last work are adopted, then the pre-response energies of the
internal neurons are calculated by multiplying the top-down
input and the corresponding synaptic weights. The k internal
winner neurons are selected by means of the top-k competition
mechanism to be activated. These activated internal neurons
perform the lateral excitation to activate more surrounding
neurons to store new information. In the lateral excitation,
the neighbouring neurons of the k winner neurons are also
permitted to be activated and modify their synaptic weights.
These pre-response energies of the new fire neighbouring neu-
rons are determined by those of the winner neurons, multiplied
by an exponentially declining function of their distance to the
winner neurons:

e
−d2

2 zwinner → zi (11)

where d=1 denotes the distance between the immediate four
neighbors (up, down, left, right) and the winner neuron, and
d =

√
2 denotes the distance between the diagonal four

neighbors and the winner neuron, and the rest distances can
be deduced in the same manner, as shown in Fig. 4.
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Fig. 4. Scheme of the lateral excitation of the internal neurons in the MDN.
It is noteworthy that only 24 neurons surrounding the winner neuron fire.
Actually, the fire scope of the winner neurons can be set in light of the actual
requirement.

Then these new fire neurons modify their activated times
and connection weights. In the off-task process, these new
fire neurons can memorize the similar environment knowledge
with the neurons that activate them. The environment similar-
ity s defined in the following Eq. (12) is used to determine
which neuron to store which similar environment knowledge.
In other words, the environment knowledge corresponding to
the highest similarity are stored in the nearest surrounding
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neurons (d=1 in Fig. 4), when all the nearest four neurons
have been occupied, other environmental knowledge with
relatively low similarity are stored to the nearer surrounding
neurons (d =

√
2 in Fig. 4), and the rest can be deduced

in the same manner. During the following perceptual learning
of the mobile robot, if it encounters a similar environment,
it can determine the movement direction quickly, according
to the relation between the environment knowledge and the
corresponding movement direction that the robot has learned
in the off-task processes.

IV. HOW THE LATERAL EXCITATION CAUSE TRANSFER
DURING OFF-TASK PROCESS

In the training phase, robot executes stimulus-specific (cor-
responding to the specific location relationship among the
robot, target and the obstacles in this work, depicted by the
following Eq. (10)) and concept-specific (corresponding to
the specific moving direction of the robot) learning, e.g.,
L1,1D1, as shown in Fig. 5 (A), where D1 denotes the
moving direction “1” of the robot (the robot has 8 moving
directions, as depicted in the following Section V. A), and
L1,1 denotes the first location relationship among the robot,
target and the obstacle, corresponding to the moving direction
“1”. L1,2 denotes the second location relationship among the
robot, target and the obstacle, corresponding to the moving
direction “1”, and the rest can be deduced in the same manner.
Each moving direction of the robot has 19 typical location
relationships, as shown in Fig. 6. This phase establishes the
synaptic connections between the specific location relation and
the specific moving direction of the robot.

During the perceptual learning, at each time step, the robot’s
brain (MDN) transforms the environment location informa-
tion to corresponding input information p, according to the
following Eq. (10), and calculate the similarity between this
new input scenario and the one already learned. Assuming the
current neuron weight is v, the similarity s can be computed
as follows:

s =
v

||v||
· p

||p||
(12)

If the similarity is no less than a threshold already set, this
scenario is regarded as already learned, and the robot can
make a decision from the learned knowledge. Otherwise, it
is regarded as unknown, and the robot also makes a decision
based on its experience (the knowledge it has learned), and
moves along this direction to continue the following task. It is
noteworthy that this direction maybe not the best and the robot
may encounter a variety of new scenarios in its following task.

In the off-task processes, the robot will re-study these new
scenarios that it has encountered in the former work and
determine the best moving direction in accordance with the
following section Determining the Best Moving Direction.
Then it will store these new scenario information and their
corresponding moving direction by means of the lateral excita-
tion mechanism depicted in the above section. Thus the MDN
generates new weight connections, that is to say, it connects
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Fig. 6. The 19 typical location relationship among the robot, target and
obstacle, corresponding the moving direction “1”, where the blue rectangle
denotes the agent, green circle denotes the target, and black circle denotes the
obstacle, consistent with the description in the following Fig. 7. The location
relationship of other moving directions can be deduced with the same manner.

these scenario information with the best moving directions. In
the following perceptual learning, when the robot encounters
(exposes to) the similar scenario, it can make a better decision
(transfer to a better moving direction in this work) based on the
experience obtained in the pervious off-task processes. With
this mechanism, the robot will become more and more smart.

A. Example: Transfer via the Off-task Processes

Assuming at a time step, the new input scenario (saved in
Lm as shown in Fig. 5 (A)) is regarded as a new scenario. In
the off-task process, the robot calculates and determines the
best moving direction corresponding to this new scenario Lm,
in terms of the following section Determining the Best Moving
Direction. Assuming the best moving direction is direction
“1”. At the same time, assuming the neuron denoted by L1,19

fire in the top-k competition in the internal neurons, then this
new scenario Lm will be stored to the neuron (depicted by
the grey neuron in Fig. 5 (B)) which rounds the neuron L1,19,
according to the mechanism depicted in the above section
Lateral Excitation in the Internal Neurons of the MDN. Thus
the robot saves this relationship, i.e., the new scenario Lm
and the corresponding moving direction “1”, to the MDN.
Similarly, another new scenario Ln can be stored to the grey
neuron that rounds the neuron L8,2, hence the robot connects
the scenario Ln and the corresponding moving direction “2”.
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Fig. 5. Scheme of principle of the lateral excitation causing the transfer learning in the off-task process. (A) Transfer of the moving directions in the MDN.
(B) Fire more neurons in the internal layer Y . (C) A neuron column in the internal layer Y magnified.

In the following perceptual learning, if the robot encounters
a similar scenario, it can choose a better moving direction
based on the knowledge it has learned in the off-task processes,
with the limited training samples and without re-training.
Therefore, this mechanism can make the robot to acquire more
and more knowledge from the limited training samples, and
increase its intelligence gradually, even in the off-line state,
embodying the ability of the autonomous mental development
just like the human beings.

B. Determining the Best Moving Direction

Choosing a feasible behavior decision a under the present
state S1 : (x1, x2, ..., xn), and this decision a causes the robot
to transform its state to a new state S2 : (x

′

1, x
′

2, ..., x
′

n). As-
suming the state of the destination that the robot should reach
is S

′
: (x

′′

1 , x
′′

2 , ..., x
′′

n), through calculating the Manhattan
distance between the new state S2 and the destination S

′
to

evaluate the decision a, then we can achieve each evaluation

score for each decision a in A : (a1, a2, ..., an) of the state
S1. The decision with the highest score is chosen as the best
decision in the state S1.

score =
1

|S2 − S′ |
=

1∑n
i=1 |x

′
i − x

′′
i |

(13)

It is noteworthy that (x1, x2, ... , xn) have different mean-
ings in different situations. The element number n depends on
the concrete situation. In this work, (x1, x2) can be seen as
the horizontal and vertical coordinates of the agent.

Next section, three simulation experiments in static and dy-
namic environments are designed to demonstrate the potential
of the proposed methodology.

V. SIMULATION EXPERIMENTS

In this section, several entities are used to illustrate the effect
of the method designed above. One of the entities is an agent
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directed by the MDN to think and act. Except the agent, there
exist several obstacles and one target in the environment. In the
movement, the simulated agent will receive the reward from
the dopamine if it comes near the target and punishment from
the serotonin if it closes to the obstacles. Hence, the simulated
agent can determine a feasible trajectory to reach the target
under the double constraints of serotonin and dopamine. The
agent, however, have to learn this behavior by means of the
trial and error experiences.

A. Input and Output

Following entities can be defined, an agent (a), one target (t)
and an obstacle (o), as shown in Fig. 7, the agent is represented
by a blue square, the target is depicted by a green circle, while
the obstacle is denoted by a black circle. From the Fig. 7, the
position and orientation relations among the three entities can
be represented by the following formula:

θt =arctan(ax − tx, ay − ty)

dt =
√
(ax − tx)2 + (ay − ty)2

θo =arctan(ax − ox, ay − oy)

do =
√
(ax − ox)2 + (ay − oy)2

xu ={cos θt, sin θt, cos θo, sin θo,
dt

dt + do
,

do
dt + do

} (14)

where (ax, ay), (tx, ty), (ox, oy) denote the coordinates of the
agent, target and obstacle, respectively; θt (θo) represents the
angle between the heading of the agent and direction of the
target (obstacle), and dt (do) indicates the distance between the
agent and the target (obstacle). xu denotes the sensory input
of the MDN. During its movement, the agent can execute one
of the 8 possible actions, namely, it can move along each of
the cardinal or inter-cardinal directions. So the output of the
MDN is one of the 8 movement directions.

target

agent

obstacle

t
q

o
q

t
d

o
d

Fig. 7. Scheme of the relation of the position and orientation among the
agent, target and obstacle.

B. Simulation Setup

In the MDN model, the reward value α can be defined as
follows:

α =


0 dt < d2t

1
d1t−d2t dt −

d2t
d1t−d2t d1t < dt < d2t

1 dt > d1t

(15)

where d1t is the original distance between the agent and the
target, d2t denotes the distance when the agent reaches the
target, and dt represents the real-time distance between them.

The punishment value β can be defined as follows:

β =


0 do > ds

− 1
ds−dms

do +
ds

ds−dms
dms < do < ds

1 0 < do < dms

(16)

where ds represents the scan range of the agent, do means the
real-time distance between the agent and the obstacle, while
dms denotes the minimal safe distance between them.

Based on the values of α and β, the unique movement
direction of the agent can be determined by the Eq. (2).

At each step, the agent can make a decision based
on the memorized environment information, but there ex-
ist error between the actual position/orientation relation and
the position/orientation relation identified by the agent. If
the actual sensory input of the MDN is defined as p =
{p1, p2, p3, p4, p5, p6}, the synaptic weights of the activated
neurons in internal layer Y is w = {w1, w2, w3, w4, w5, w6},
then the recognition error of the agent can be defined as
follows:

e =
6∑
i=1

|pi − wi| (17)

In the following three sections, one static scenario, one dy-
namic scenario and a comparative environment are conducted
to testify whether the knowledge learned by the agent in the
off-task processes can lead to the change of its behavior in the
following perceptual learning.

C. Simulation in the Static Environment

In the static simulated environment, except the agent and
the target, there exist 13 obstacles. First, the MDN model is
trained with the training samples. After training, distribution of
the internal neurons that memorize the environment knowledge
in the layer Y , is illustrated in Fig. 8, where each small
blue square represents an internal neuron, and totally, there
are 152 (8*19) internal neurons memorize the environment
knowledge, where 8 denotes the 8 types of run directions,
and 19 represents the 19 types of typical location relationship
described in Fig. 6. The horizontal and vertical coordinates
in Fig. 8 denote the number of neurons (10000=100*100,
arranged in 100 rows and 100 columns) in the internal layer
Y.

After the MDN is trained, the agent performs the first run in
the static environment to reach the target, and the trajectory in
the first run is represented by the blue curve with “+”, as shown
in Fig. 9, and the horizontal and vertical coordinates in the Fig.
9 denote the size (1000*1000) of the simulation environment.
The agent spends 187 steps to reach the target, and its behavior
decision is made based on the original 152 training data of the
MDN. After the first run, the agent enters the off-task process,
to memorize the new environment knowledge learned in the
first run.
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Fig. 8. Distribution of the internal neurons which memorize the environment
knowledge in layer Y in the static environment.

After the first off-task process, the agent performs the
second run to reach the same target in the same environment.
The trajectory in the second run is denoted by the red curve
with “∗”, as shown in Fig. 9. During this movement, the agent
spends 176 steps to reach the same target, and it moves along
a different trajectory to reach the target. This phenomenon
is rooted in the fact that after the first run, in the off-task
process, the agent memorizes the new environment knowledge
encountered in its first run. That is to say, the agent abstracts
the similar location features and memorizes them in the new
activated neurons. Before it performs the second run, the
agent has learned new environment knowledge. Therefore,
during the following run, if the agent encounters a similar
or same environment, it can make a different decision from
the pervious run. So in the second run, the agent moves
along a different trajectory. Similarly, in the second run,
since the agent moves along a different trajectory, it learns
new environment knowledge again. After the second run,
during the off-task process, the agent memorizes the new
environment knowledge in the new activated neurons again.
Before it executes the third run, the agent has learned new
environment knowledge again. Consequently, the agent moves
along a different trajectory denoted by the purple curve in the
third run, and it spends 181 steps to reach the same target.
Similarly, before the fourth run, the agent has carried out
three off-task processes, thus it selects a different trajectory
represented by a green curve in the 4th run. During the fifth
run, the agent moves along almost the same trajectory as the
one in the fourth run, and the agent spends 171 steps to
reach the same target. Because the agent is more and more
familiar with the environment, then it learns less and less new
environment knowledge during reaching the target, from the
5th run, the agent has learned all the environment information,
hence the last three trajectories are the same as the fifth one.

Fig. 10 displays the numbers of internal neurons that mem-
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Fig. 9. Trajectories of the agent in the eight movements in static environment.

orize the environment knowledge after each run. From Fig.
10, we can see that the agent has learned new environment
knowledge during the former 5 runs. Meanwhile, the new
environment knowledge that the agent learns in each run
becomes less and less. This can be attributed to the fact
that the obstacles and target are all static, as the run goes
on, the agent becomes more and more familiar with the
environment, therefore the new environment knowledge it
learns becomes less and less.In the last three runs, since
the agent has not learned new environment knowledge, the
numbers of the internal neurons to memorize new knowledge
remain unchanged.
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Fig. 10. Numbers of the internal neurons which memorize the environment
knowledge in layer Y after the 8 movements.

Fig. 11 shows the distribution of the internal neurons that
memorize the environment knowledge in layer Y after the
8th run. Fig. 11 shows that a large amount of blue squares
(denoting the internal neurons) get together, which can boil
down to the fact that the lateral excitation of the internal
neurons in layer Y of the MDN can activate more surrounding
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neurons to memorize new similar environment knowledge. In
the following perceptual learning, if the agent encounters a
similar scenario, it can determines its run direction quickly by
means of the transfer learning, thus to improve the efficiency
of its behavior decision. Most important, the agent can con-
tinuously improve its intelligence even in the off-line states,
i.e., the off-task processes.

Fig. 11. Distribution of the internal neurons which memorize the environment
knowledge in layer Y in static environment after the 8th movement.

Fig. 12 provides the broken lines of the recognition error
by the agent after each run. During each run, the recognition
error can be calculated by the Eq. (13) and the corresponding
results are offered as follows: 0.8602, 0.3663, 0.2179, 0.2444,
0.2310, 0.2310, 0.2310 and 0.2310. Each point on the broken
lines represents a recognition error of the agent at each step.
From Fig. 12, we can see that at the former three runs, after
each run, the recognition error will decrease a little. At the
third run, the recognition error gets the smallest value, i.e.,
0.2179. At the last four runs, the recognition errors are about
0.23. With the run going on, the agent becomes more and
more familiar with the environment, so the recognition error
becomes smaller and smaller. After the fourth run, the agent
has become very familiar with the environment. Therefore, the
recognition errors of the agent keep almost unchanged after
the 4th run.

D. Simulation in the Dynamic Environment

Similar with the simulation in the static environment, ap-
plying the lateral excitation in the off-task process of the agent
to the dynamic environment, we can get the similar results, as
displayed from Fig. 13 to Fig. 16.

In the dynamic environment, besides the static obstacles,
there are three dynamic obstacles denoted by the unfilled
circles with a radium 6. To compare the effect of the transfer
learning in the sequential tasks, we set the following exper-
iment process: the agent executes the first run in a static
scenario (the target and all the obstacles are static), and from
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Fig. 12. Scheme of the average recognition error of the agent in the 8
movements in the static environment.

the 2nd to the 19th run in dynamic scenarios (dynamic target
and three dynamic obstacles, other obstacles are static), while
the 20th run still in a static scenario, same as the 1st run. Thus
we can compare the changes of the trajectories of the agent
after the off-task process. The trajectories in the 20 runs are
displayed in the Fig. 13.
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Fig. 13. Trajectories of the agent in the 20 movements in dynamic
environment.

Fig. 13 shows that after 4 times learning in the off-task
process, the agent grasps more knowledge about the scenario,
so from the 5th run, it can catch up the target faster (shorter
moving paths), compared with the 1st run. Concretely, the
running steps of the agent in the former 5 runs are 187, 314,
140, 180 and 171, respectively. Compared with the 1st run, the
running step in the 5th run reduces 16 steps, which indicates
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that the agent has learned new knowledge in the former
4 runs, and the transfer learning happened in the dynamic
environment.

Fig. 14 provides the distribution of the neuron memorizing
the environment knowledge before and after the 20 runs. It
is obvious that there are some neurons gathering together,
which indicate the effect of the lateral excitation of the internal
neurons on the MDN again, and the knowledge stored in
the neurons are new environment knowledge that the agent
learned during the off-task processes. Compared with the
Fig. 11, intuitively, there are more internal neurons aggregate
together, which indicates that in the dynamic environment,
there are more internal neurons needed to memorize the new
environment knowledge.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(a)

(b)

Fig. 14. Distribution of the internal neurons which memorize the environment
knowledge in the layer Y in dynamic environment (a) before the movement
(b) after the 20th movement.

In dynamic environment, number of neurons that memorize

new environment knowledge will increase with the running
times, as shown in Fig. 15. Since the environment is always
changing, during each run, the agent will encounter new
environment information and learn new knowledge. Corre-
spondingly, the numbers of the neuron to store new knowledge
in the internal layer increase approximately logarithmically.
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Fig. 15. Number change of the internal neurons which memorize the envi-
ronment knowledge in layer Y in the 20 movements in dynamic environment.

For simplicity and clearity, Fig. 16 only provides the broken
lines of the recognition error in the 1st and 20th runs in
dynamic environment. The recognition errors in the 20 runs
are 0.8859, 0.5336, 0.3493, 0.2720, 0.2374, 0.2426, 0.2008,
0.2086. 0.2018, 0.2059, 0.2137, 0.2146, 0.2081, 0.2153,
0.1999, 0.2543, 0.1988, 0.2186, 0.1936 and 0.2440, respec-
tively. Since the agent moves in different trajectory in each
run, and it achieves new environment knowledge after each
run, hence the recognition error are always changing. But with
the increase of the run times, the agent becomes gradually
familiar with the changing environment, thus the recognition
error reduces accordingly.

E. Comparative Experiment

To further demonstrate the potential of the methodology
proposed in this work, this section compares the final trajecto-
ries of the three methods, i.e., the MDN proposed in this work,
original DN [52], and DQN [29]. All these three methods
independently run five times to compare the final trajectories,
as shown in Fig. 17, where the green triangle denotes the
destination, and the blue pentagram denotes the agent. During
the run, the performance parameters of the three algorithms
are recoded and shown in Table 1.

From Fig. 17 and Table 1, we can see that compared with the
original DN, the proposed MDN algorithm has fewer moving
steps (32 vs 44), and the final average recognition error is
lower than that of the original DN (0.2458 vs 0.2986). As the
proposed MDN method has the ability of transfer learning, it
can be seen from the data in the 4th column in the Table 1
that the number of training samples needed by the proposed
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Fig. 16. Schematic diagram of the recognition error in the 1st and 20th runs
of the agent in the dynamic environment.
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Fig. 17. Schematic diagram of the performance comparison among the
original DN, DQN and our proposed MDN method.

TABLE I
EXPERIMENT RESULTS COMPARISON AMONG THE THREE METHODS.

Methods Running Recognition Training Run times
steps error samples to get stable path

MDN 32 0.2458 150 4
Original DN 44 0.2986 500 no

DQN 42 no 0 29

MDN method is far less than that of the original DN. In cases
with a small amount of training samples, the MDN method
finally can still find a feasible short path, marked by triangles
in the Fig. 17. It is rooted in the fact that the proposed MDN
method has the unique cognitive transfer ability, when the
agent encounters similar environmental information, it will
temporarily memorize this information. During the off-task
process, the agent can perform the transfer learning according
to the similar characteristics, and generate new knowledge
inside the MDN, that is, the amount of knowledge inside
the MDN presents an incremental pattern, thus the agent can
constantly improve its decision-making ability. Consequently,
the agent only needs four runs to get a stable path. This index
does not exist in the original DN, because the original DN
chooses the same path in each run, and there is no adjustment
of decision.

For the complex static environment, compared with the
DQN, the proposed MDN algorithm not only has the less
running steps to reach the target (32 vs 42), but also the faster
convergence speed. That is, the MDN needs only 4 attempts to
find the stable path, while the DQN needs 29 attempts. But the
advantage of the DQN is that it does not need training samples,
and it can learn decisions through continuous interaction
with the environment. The proposed MDN method needs
training by a small number of samples, but it can continuously
improve its learning ability by means of interacting with the
environment, thus accelerating its convergence speed.

VI. EXPERIMENT WITH THE ROS SYSTEM

To demonstrate the effect of the transfer learning, a real
robot, as shown in Fig. 18, is used to do the experiment. It
uses the laser radar to sense the environment and odometer
to record the location. Therefore, the real-time location and
velocity of the agent can be achieved.

Fig. 18. Mobile robot used in the experiment.

There are 12 static obstacles in the environment. The initial
positions of the robot and the static obstacles are shown in
Fig. 19. Initial position of the robot is located at the (0, 0)
of the global coordinate system (i.e., the odometer coordinate
system), and the robot is set to be the origin of the coordinate
system, and its running direction is set to be the X axis of
the coordinate system, while the direction perpendicular to
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the running direction of the robot is set to be the Y axis. This
coordinate system is fixed on the robot and moves with the
robot’s running.

Fig. 19. Initial positions of the agent and the obstacles in the physical
experiment.

After starting the robot, the MDN is trained to control
the robot. Because the experiment is performed in a static
scenario, after training, distribution of the internal neurons
which memorize the environment knowledge is the same as
that in the Fig. 8.

The experiment environment is set to be 5×5, and the target
is set to be located at (3.5, -2.7). During the movement, the
robot can learn new environment knowledge continuously.
The run trajectories of the robot are drawn and shown in
Fig. 20. The blue square denotes the robot, while the black
circles and black rectangles denote the obstacles. Since the
robot encounters similar environment information in each run,
and learns these new environment knowledge in the off-
task process, thus its run trajectory in each run is different.
Meanwhile, the trajectory turns to be better gradually. Fig. 21
provides the monitoring interface of the robot at its initial run.

After the 8th run, the distribution of the neurons that store
the environment knowledge is shown in Fig. 22. Fig. 22
displays that lateral excitation of the internal neurons in layer
Y indeed happens during the off-task processes.

Fig. 23 provides the neurons which store the environment
knowledge during the robot’s running. We can see that with the
increase of the robot running, knowledge stored in the internal
neurons increases gradually and tends to be stable, which
denotes that the new knowledge the robot learned becomes
less and less.

Moreover, Fig. 24 displays the broken lines of the recogni-
tion error in the 8 runs. The recognition error in the 8 runs
are 0.4597, 0.3325, 0.3216, 0.2897, 0.2928, 0.2634, 0.2683
and 0.2618, respectively. From Fig. 24, we can see that the
recognition error reduces gradually and tends to be stable.
Because the environment is static and the robot moves in the
same scenario each time, so it is more and more familiar with
the environment, leading to smaller and smaller recognition
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Fig. 20. Run trajectories of the robot in the 8 runs in the physical experiment.

Fig. 21. The monitoring interface of the robot during its run in the physical
experiment.

error. During the 5th run, the recognition errors increase a
little, which can be attributed to the fact that the robot collides
with an obstacle, leading to it deviating from the original
trajectory, thus its moving steps also increases accordingly.

Taken together, we can achieve the results shown in Table
2. Table 2 shows that with the run times increase, basically,
the total running steps of the robot reduces gradually, and the
neurons that store the environment knowledge increases, while
the recognition error decreases. These results show that after
each run, the robot executes the off-task process to learn new
knowledge. In the following run, when the robot encounters a
similar scenario, it can decide its run direction by the transfer
learning. Based on the knowledge it has learned, the robot can
make quick and better decision.

The above four experiments demonstrate that the robot
indeed achieves the incremental learning ability through the
transfer learning.
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Fig. 22. Distribution of the internal neurons memorized the environment
knowledge after 8 movements in the physical experiment.
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Fig. 23. Number change of the internal neurons which memorize the
environment knowledge in internal layer Y in the 8 runs in the physical
experiment.

TABLE II
COMPARISON AMONG THE 8 RUNS IN THE EXPERIMENT

Running Total running Neurons stored Recognition
times steps knowledge error

1st movement 51 152 0.4597
2nd movement 48 336 0.3325
3rd movement 46 342 0.3216
4th movement 43 343 0.2897
5th movement 56 344 0.2928
6th movement 46 352 0.2634
7th movement 46 352 0.2683
8th movement 39 355 0.2618
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Fig. 24. Scheme of the recognition error in the 8 runs of the robot in the
experiment.

VII. CONCLUSION AND FUTURE WORK

To promote the efficiency of behavior decision of the mobile
robots, this paper first designs a gated self-organization mecha-
nism to trigger the “brain” of the mobile robot to work again in
off-line states, then the lateral excitation in the internal neurons
of the MDN is adopted to activate more surrounding neurons
to memorize the scenario and the corresponding movement
direction during the off-task processes. In the following envi-
ronment perceptual learning, if the robot encounters a similar
or same situation, it can determine its movement direction
quickly, according to the knowledge it has learned in the off-
task processes, thus to promote the efficiency of the behavior
decision. Moreover, the proposed algorithm can continuously
improve the intelligence of the mobile robots, even in their
off-line states. Results of an autonomous robot navigation in
static and dynamic simulation environments, as well as that
of the physical experiment, demonstrate the potential of the
proposed algorithm.

But this paper only studies the effect of the proposed
algorithm in simple environments. In the future, more complex
scenarios will be designed to illustrate the advantages of the
proposed algorithm. Furthermore, in determining the activated
motor neurons in layer Z, only the activated motor neurons in
the last previous work are considered, and those in former
works have not considered. Theoretically, all the activated
motor neurons in the previous works should have chance to
fire in the off-task processes. Therefore, how to investigate
the influence of the time in calculating the fire probability of
the motor neurons, is another important research direction. In
the physical experiment, collision occurs occasionally, at the
same time, the cumulative detection error of the lidar affects
the performance of the trajectory. Therefore, how to perfect
the algorithm and decrease the influence of detection error of
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the lidar simultaneously, is another important and interesting
research point.
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