
IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022 3679

Grouping-Based Optimization Method for
Multirobot System Pattern Formation

Tingting Wang , Fangfang Zhang , Jianbin Xin , and Yanhong Liu

Abstract—This article presents a novel optimization method for
multirobot formation in an obstacle environment. For this chal-
lenge, we proposed an iterative optimization approach in previous
work, in which all robots as a whole obtain the optimal goal pattern,
and then, move to the goal without collision to form the pattern.
However, this approach results in high consumption in terms of time
and the path that robots travel as the number of robots increases.
To improve efficiency, we propose a grouping-based optimization
method. First, a specific grouping strategy (the number of groups
and the number of data points in each group are fixed) is utilized
to group the multiple robots. And then in an obstacle environment,
each group of robots completes its optimal pattern formation in
parallel without collision through coordination within and between
groups. The simulation results of the multiletter pattern formation
validate the effectiveness of the method proposed in this article
compared to the method without grouping.

Index Terms—Grouping, mixed integer convex quadratic
programming, multirobot system, pattern formation.

I. INTRODUCTION

FOR multirobot systems, many research problems are fo-
cused on to be addressed, such as formation [1], [2],

avoidance [3], task allocation [4], etc. Among them, pattern
formation is gaining increasing attention in various scenarios.
In military or disaster relief scenarios, multirobots form specific
patterns to complete tasks such as path searching and area cover-
age [5]. For entertainment purposes, multirobots equipped with
colorful LEDs can present pleasing visual effects by changing
patterns [6]. Furthermore, the idea of pattern formation can also
be applied to chip design by modeling droplets as robots to
coordinate the droplets automatically. The goal formations are
determined to fit within the specified regions of the chip [7], [8].

Many articles on the pattern formation study how to effec-
tively and stably control multiple robots to form a predefined
pattern [9]–[14]. A self-assembly algorithm proposed in [9]
that links three primitive collective behaviors: edge-following,

Manuscript received 6 January 2021; revised 8 July 2021; accepted 19 October
2021. Date of publication 12 November 2021; date of current version 26 August
2022. This work was supported in part by the National Natural Science Founda-
tion of China under Grant 61603345, Grant 61703372, and Grant 61773351; in
part by Outstanding Foreign Scientist Support Project in Henan Province under
Grant GZS2019008; in part by Young Talent Lift Project in Henan Province
under Grant 2020hytp006 to conduct this research investigation. (Corresponding
author: Fangfang Zhang.)

The authors are with the School of Electrical Engineering, Zhengzhou Uni-
versity, Zhengzhou 450001, China (e-mail: tingwang951126@163.com; zhang-
fangfang@zzu.edu.cn; j.xin@zzu.edu.cn; liuyh@zzu.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSYST.2021.3122548, provided by the authors.

Digital Object Identifier 10.1109/JSYST.2021.3122548

gradient formation, and localization to ensure that thousands
of robots form user-specified patterns. In [10], a scaled rota-
tion gain matrix is designed to ensure that unmanned aerial
vehicles (UAVs) converge to the desired pattern. The risk of
collision is eliminated via the distributed task assignment of
UAVs to desired formation points. The distributed self-assembly
approach presented in [11] in which two motion chains are
iteratively generated in parallel to fill the desired pattern. In
[11], a decentralized method is proposed that the repeating
pattern formation is divided into two phase. In the first phase,
the multirobots are grouped into multiple basic patterns, and in
the second phase, the final pattern is assembled by the basic
pattern. In [12], swarm robot with highly limited cognition to
form desired global patterns on a discrete grid according to the
generated probabilistic local state-action graph. In [13], a pattern
formation algorithm with minimum shape for nonholonomic
robots by combining the idea of the virtual structure method for
formation control with a behavior-based approach is proposed.
In [14], the swarm robots are divided into multiple groups, and
then, an adaptive mechanism based on social groups is adopted
to dynamically adjust members of different groups through
cooperation to form space patterns in parallel.

In practical applications, patterns often need to be optimized
according to the task requirements. The limited existing methods
solve the optimized pattern [15]–[19]. In [15] and [16], the cov-
erage method is adopted to optimize the deployment of multiple
robots in a given pattern area to achieve a visually appealing final
pattern. In [17] and [18], the convex programming techniques
are used to minimize the total travel distance for getting the
optimal pattern in the obstacle-free environment. In [19], an
algorithm is proposed to find the optimal goal pattern position
for the UAV cluster, and then, adopted the Hungarian algorithm
to allocate targets. The deep Q learning the method is used to find
the optimal flight parameters of the noncollision the trajectory
for the UAV to the target position under the condition of ensuring
the minimum total flight distance of a single UAV so that the
UAV reaches the goal point to form the pattern.

Although these works are helpful to pattern formation for mul-
tirobot systems, it is observed that the optimal pattern generation
in these works does not consider the obstacle constraints, so
these methods for pattern formation cannot efficiently optimize
the pattern formation in the obstacles environment. In order
to achieve the optimization for the pattern formation in an
environment with obstacle, we propose an iterative optimization
approach in previous work [20] where the optimal pattern pa-
rameters are obtained by solving the system model established in

1937-9234 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6245-3820
https://orcid.org/0000-0001-6516-9673
https://orcid.org/0000-0002-1024-4135
https://orcid.org/0000-0002-7349-5871
mailto:tingwang951126@163.com
mailto:zhangfangfang@zzu.edu.cn
mailto:zhangfangfang@zzu.edu.cn
mailto:j.xin@zzu.edu.cn
mailto:liuyh@zzu.edu.cn
https://doi.org/10.1109/JSYST.2021.3122548

3680 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

Fig. 1. Overview of the proposed method.

an obstacle environment, then an iterative controller is designed
to assign the goals and plan a collision-free path for each robot to
reach the goal. However, in this approach, all robots as a whole
obtain the optimal goal pattern, and then, move together. It has
a high cost in time and path that robots travel as the number of
robots expands.

To address these limitations, this article proposes a grouping-
based optimization method for multirobot pattern formation in
an obstacle environment. The main contributions of this article
can be summarized as follows.

1) A specific grouping method is adopted to group randomly
deployed multirobots.

2) Each group of robots realizes its optimal pattern formation
in parallel without collision via coordination within and
between groups in an obstacle environment.

3) Simulation results in scenarios of letter pattern formation
verify the effectiveness of our algorithm in improving the
time efficiency and reducing the path compared with the
algorithm without grouping.

The structure of this article are arranged as follows. In Sec-
tion II, we outline the problem description. The specific grouping
method is introduced in Section III. The generation of the
optimal pattern and an iterative controller are presented in Sec-
tion IV. In Section V, we demonstrate the simulation experiment
and analyze the results. Finally, Section VI concludes this article.

II. PROBLEM DESCRIPTION

In the plane region, given N disk robots with a radius ri,
i ∈ {1, . . .N} and M static disk obstacles with a radius rom ,
m ∈ {1, . . .M}, we define Ri as robot i, the symbol contains
the attributes of the robot, such as its position, radius, and
velocity. The initial position vector of the N robots is expressed
as P = [p1; . . .;pN]N×2, where pi = [xi, yi]1×2 represents the
initial position of Ri. The velocity of Ri is vi = [vix, viy]1×2.
The position vector of the M static obstacles is represented by
O = [o1; . . .;oM]M×2, where om = [xom

, yom
]1×2 represents

the position of obstacle m. Let there be K desired patterns.
The desired pattern l is given by Sl = [sl1; . . .; s

l
Nl
]Nl×2, where

slj = [xl
sj
, ylsj]1×2 represents the position of point j of the de-

sired pattern l, l ∈ {1, . . .K}, j ∈ {1, . . .Nl}. Nl is the number
of robots required to form the desired pattern l,

∑K
l=1 Nl = N .

The randomly initialized multirobots are grouped intoK groups
G={Gl}, where Gl={Rl

i}, l ∈ {1, . . .,K}, i ∈ {1, . . ., Nl}.
Pl = [pl

1; . . .;p
l
Nl
]Nl×2 is denoted as the initial position vector

of Gl, where pl
i = [xl

i, y
l
i]1×2 represents the initial position of

Rl
i. The optimal pattern l of the desired pattern l is expressed as

Q∗
l=[ql

1; . . .;q
l
Nl
]Nl×2, which is transformed from Sl through

scale and translation, where ql
j = [xql

j
, yql

j
]1×2 represents the

position of point j of optimal pattern l, j ∈ {1, . . .Nl}. For this
problem, important assumptions are given as follows.

1) Failure of the robot during movement is not considered.
2) All robots can accurately obtain position and velocity

information between each other.
3) The kinematics model of all robots is a holonomic model

referenced from [21].
An overview of the method is given in Fig. 1. Based on the

traditional K-means method [22], given the number of groups
and the number of samples in each group, we present a specific
clustering method to group randomly initialized multirobots
into K groups G={Gl}, l ∈ {1, . . .,K}. Then, Gl completes
its optimal pattern formation in parallel. In the parallel optimal
pattern formation process, first, Gl obtains the optimal pattern
Q∗

l via the optimal pattern generation model established in an
obstacle environment; second, an iterative controller obtains the
optimal assignment between Gl and Q∗

l , and then, Rl
i in Gl

reaches the assigned goal without collision through coordination
within and between groups, after which the pattern l is formed.
Once all patterns are formed, the whole ends.

Next, we introduce the implementation of the proposed algo-
rithm in detail.

III. GROUPING INITIALIZED MULTIROBOTS

This section presents the grouping strategy developed from
the traditional K-means method [22]. This strategy sets the fixed
number of groups and the fixed size of each group to group the
randomly initialized multirobots.

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GROUPING-BASED OPTIMIZATION METHOD FOR MULTI-ROBOT SYSTEM PATTERN FORMATION 3681

A. Traditional K-Means Method

The K-means algorithm clusters the point set X={χi}, i ∈
{1, . . ., N}, into K clusters C={Cj}, j ∈ {1, . . .,K}. Let μj be
the centroid of the cluster Cj . The squared error between μj and
the point χi in the cluster Cj is defined as follows:

J (Cj) =
∑
χi∈Cj

‖χi − μj‖2 (1)

where μj =
1

|Cj |
∑

χi∈Cj χi, and |Cj | is the number of points in
Cj .

The goal of K-means is to minimize the sum of the squared
error of all K clusters

min J (C) =
K∑
j=1

∑
χi∈Cj

‖χi − μj‖
2
. (2)

The main steps of the K-means algorithm are as follows [23].
1) Choose K points as scattered as possible as the initial

centroids of clusters.
2) Assign the remaining points to the nearest centroids, form-

ing K clusters.
3) Recalculate the centroid of each cluster to determine

whether the new centroids are the same as the old cen-
troids. If the same, the clustering is complete; otherwise,
update the centroids and perform step 2).

The traditional K-means method does not specify the number
of points contained in each cluster. In this article, the number of
robots contained in each group is fixed according to the number
of robots required to form each desired pattern.

B. Proposed Grouping Method

With reference to the traditional K-means method, we present
the developed clustering method based on the initial position
vector P = [p1; . . .;pN]N×2, in which the multirobots are clus-
tered into K groups G={Gj}, j ∈ {1, . . .,K}, where K is the
number of desired patterns. The number Nj of robots required
to form each desired pattern is used to constrain the size of each
group. We update the group centroid iteratively until the centroid
converges, after which the grouping is complete. This method
consists of three steps, where steps 1) and 3) are the same as
those in the traditional method. In step 1), we choose the K
dispersed positions of the robots as the initial centroids of the
groups. Next, we detail step 2), i.e., assigning the robots to the
centroids.

Considering the fixed size of the group, we minimize the sum
of the squared distance between the robots and the centroids
to obtain the optimal allocation between the robots and the
centroids. The assignment model is as follows:

minZ (G,σ) =
N∑
i=1

K∑
j=1

zijxij (3)

Subject to{∑N
i=1 xij = Nj , j = 1, . . .,K (4a)∑K
j=1 xij = 1, i = 1, . . ., N (4b)

xij =

{
1, Ri assigned to μj

0, Ri not assigned to μj

(5)

where zij=‖pi−μj‖2 is the squared distance between the
position pi of Ri and the centroid position μj of the group
Gj , and μj =

1
|Gj |

∑
Ri∈Gj

pi, j ∈ {1, . . .,K}. σ(xij)N×K is
the assignment between the robots and the centroids. Equa-
tion (4 a) means that group Gj contains Nj robots. Equation
(4 b) expresses that a robot can be assigned to only one group.

Solving the function (3) satisfying the constraints (4) and (5)
is the 0–1 integer programming problem [24]. The problem can
be solved utilizing the CPLEX optimization software [25] to
obtain the optimal assignment.

In step 3), we recalculate the centroid of each group to deter-
mine whether the centroids have changed; if not, the grouping is
complete. Otherwise, we update the centroids and perform step
2).

As with the traditional clustering methods, different initial
centroids lead to different clusterings because the K-means
method converges to the local minima. We select centroids that
are as dispersed as possible; this process is detailed in [23]. Fig. 2
shows an illustration of the specific grouping algorithm for three
groups of fixed size.

IV. OPTIMAL PATTERN FORMATION

After completing the grouping, each group completes its opti-
mal pattern formation in parallel without collision through coor-
dination within and between groups. Without loss of generality,
we present in detail the process undertaken by a group of robots
Gl={Rl

i} in an obstacle environment to achieve the optimal
pattern formation. The process consists of two phases [20]:
the optimal pattern Q∗

l generation and the collision-free path
planning using an iterative controller.

A. Optimal Pattern Q∗
l Generation

In an obstacle environment, Gl minimizes the objective func-
tion (the sum of the squared distance between the robot positions
and the goal positions) to obtain the optimal assignment σ∗

l

between the robots and the pattern goals, the optimal scale
and the translation parameters α∗

l , d∗
l = [dl1, d

l
2]

∗
1×2

. Then, the
optimal pattern Q∗

l=α∗
lSl + d∗

l .
The objective function of αl, dl, and σl is given as follows:

minH (αl,dl,σl) =

Nl∑
i=1

Nl∑
j=1

hijxij (6)

subject to

⎧⎪⎪⎨
⎪⎪⎩

Nl∑
i=1

xij = 1, j = 1, . . ., Nl (7a)

Nl∑
j=1

xij = 1, i = 1, . . ., Nl (7b)

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

3682 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

Fig. 2. Illustration of the specific grouping algorithm. The groups labeled red, green, and blue have fixed sizes of 10,13, and 9, respectively. (a) Initial positions
of multiple robots as the input. (b) Three positions selected as initial group centroid and initial assignment of the positions to groups. (c) and (d) Intermediate
iterations updating group labels and their centroids. (e) Final grouping obtained by the specific grouping algorithm at convergence.

xij =

{
1, Rl

i assigned to ql
j

0, Rl
i not assigned to ql

j

(8)

where hij = ‖pl
i − ql

j‖2 is the squared distance between the
initial position pl

i of Rl
i and the position ql

j of the point j of
the optimal pattern l. σl=(xij)Nl×Nl

is the assignment matrix
between the optimal pattern goal and the robot. Formulas (7 a)
and (7 b), respectively, indicate that a goal can be assigned to
only one robot and that a robot can be assigned to only one goal.
The optimal pattern Q∗

l is obtained from the desired pattern Sl

by scale and translation.

ql
j=αls

l
j + dl ⇒{

xql
j
= αlyslj + dl1

yql
j
=αlyslj + dl2

(9)

where ql
j=[xql

j
, yql

j
]1×2 is the position of the point j of the

optimal pattern l and slj = [xl
sj
, ylsj]1×2 represents the position

of the point j in the desired pattern l, j ∈ {1, . . .Nl}.

hij =
(
xl
i

)2
+
(
yli
)2

+ α2
l

((
xl

sj

)2

+
(
yl
sj

)2
)

− 2αl

(
xl
ix

l
sj
+ yliy

l
sj

)
+ 2αl

(
xl

sj
dl1 + yl

sj
dl2

)
− 2

(
xl
id

l
1 + ylid

l
2

)
+
(
dl1
)2

+
(
dl2
)2

= α2
l s

l
j

(
slj
)� − 2αlp

l
i

(
slj
)�

+ 2αls
l
jd

�
l

− 2pl
id

�
l + dld

�
l + pl

i

(
pl
i

)�
. (10)

Substituting formula (10) into H(αl,dl, σl), we obtain

H(αl,dl, σl) =

Nl∑
i=1

Nl∑
j=1

(
α2
l s

l
j

(
slj
)�

xij − 2αlp
l
i

(
slj
)�

xij

+2αls
l
jd

�
l xij−2pl

id
�
l xij + dld

�
l xij + pl

i

(
pl
i

)�
xij

)

= α2
l

Nl∑
i=1

slj
(
slj
)� − 2αl

Nl∑
i=1

Nl∑
j=1

pl
i

(
slj
)�

xij

+ 2αl

Nl∑
i=1

sljd
�
l − 2

Nl∑
i=1

pl
id

�
l

+

Nl∑
i=1

dld
�
l +

Nl∑
i=1

pl
i

(
pl
i

)�

= Aα2
l − 2αl

Nl∑
i=1

Nl∑
j=1

pl
i

(
slj
)�

xij + 2αlsld
�
l

− 2pld
�
l +Nldld

�
l +B (11)

where A=
∑Nl

j=1 s
l
j(s

l
j)

�
, B=

∑Nl

i=1 p
l
i(p

l
i)

�
, sl=

∑Nl

j=1 s
l
j ,

and pl=
∑Nl

i=1 p
l
i are independent of αl, dl, and σl.

If the assignment σ∗
l (x

∗
ij) is optimal at some values of αl ∈

(0,∞), dl, then it is also optimal at any αl ∈ (0,∞), dl [17],
[20]. Thus, from formula (11), let a pseudocost kij = −pl

i(s
l
j)

�;

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GROUPING-BASED OPTIMIZATION METHOD FOR MULTI-ROBOT SYSTEM PATTERN FORMATION 3683

then, the following assignment model is established:

minK =

Nl∑
i=1

Nl∑
j=1

kijxij

=

Nl∑
i=1

Nl∑
j=1

(
−pl

i

(
slj
)�)

xij (12)

subject to the constraints (7) and (8).
We can solve this assignment model to obtain the optimal

assignment σ∗
l (x

∗
ij) and the minimum function value K∗ by

adopting the auction algorithm [26].
Based on σ∗

l (x
∗
ij), formula (11) can be written as

H (αl,dl) = Aα2
l + 2αlK

∗ + 2αlsld
�
l − 2pld

�
l

+Nldld
�
l +B. (13)

The function (13) is a convex quadratic function of αl, dl

[17], [20], which serves as the final objective function needed to
minimize for obtaining the optimal pattern parameters α∗

l , d∗
l .

Considering that the optimal pattern generation model is built
in the obstacle environment, the final objective function (13)
needs to meet the following constraints.

1) The obstacle constraints should be considered to ensure
that the optimal pattern Q∗

l is not generated in static obstacles;
thus, the following conditions must be met:

∥∥ql
j − oi

∥∥ ≥ rj + roi (14)

where oi = [xoi
, yoi

] is the position of the static obstacle i, i ∈
{1, . . .,M}; rj is the robot radius; and roi is the static obstacle
radius.

According to (9), the constraint (14) can be further written as
follows:

√[(
αlxl

sj
+ dl1

)
− xoi

]2
+
[(

αlylsj + dl2

)
− yoi

]2
≥ rj + roi . (15)

The aforementioned equation is a nonconvex constraint. Min-
imizing the objective function (13) under the constraint (15)
is a nonconvex optimization problem. Nonconvex optimization
problems can have a global optimal solution. However, it can
have multiple local optimal solutions, making the problem dif-
ficult to solve. Therefore, the binary variables are introduced
to approximate the constraint (15) into a linear constraint [20],
[27], and then, transform the nonconvex optimization problem
into a simple mixed integer convex quadratic programming

problem [28], [29] with a global optimal solution⎧⎨
⎩

∣∣∣αlxslj
+ dl1 − xoi

∣∣∣ ≥ rj + roi∣∣∣αlyslj + dl2 − yoi

∣∣∣ ≥ rj + roi

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αlxslj
+ dl1 − xoi

≥ rj + roi − FWij(1)

xoi
−
(
αlxslj

+ dl1

)
≥ rj + roi − FWij(2)

αlyslj + dl2 − yoi
≥ rj + roi − FWij(3)

yoi
−
(
αlyslj + dl2

)
≥ rj + roi − FWij(4)

4∑
ω=1

Wij(ω) ≤ 3

(16)

where Wij(ω) is the introduced binary variable and has a value
of 1 or 0, ω ∈ {1, 2, 3, 4}, and F is a positive value and is much
larger than rj + roi .

2) The following separation conditions between the optimal
pattern goals should be satisfied to ensure that the robot can
finally reach the assigned goals without overlapping∥∥ql

i − ql
j

∥∥ ≥ ri + rj ⇒[(
αlxsli

− αlxslj

)2

+
(
αlysli − αlyslj

)2
]
≥ (ri + rj)

2

⇒ αl min
∥∥sli − slj

∥∥ ≥ ri + rj (17)

where i
= j; i, j ∈ {1, . . ., Nl}.
3) In general, practical applications require the pattern goals

to not lie outside the workspace. The following constraints can
be specified:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αl max
(
xslj

)
+ dl1 ≤ Xmax − rj

αl min
(
xslj

)
+ dl1 ≥ Xmin − rj

αl max
(
yslj

)
+ dl2 ≤ Ymax − rj

αl min
(
yslj

)
+ dl2 ≥ Ymin − rj

(18)

where Xmax, Xmin, Ymax, and Ymin are the maximum and
minimum boundaries of the entire application area along the
X- and Y -axes, respectively.

Under the affine constraints (16)–(18), minimizing the objec-
tive convex quadratic function (13) is a mixed integer convex
quadratic programming problem [28], [29]. The problem can
be solved utilizing the CPLEX optimization software to obtain
the global optimal pattern parameters α∗

l , d∗
l . Then, the optimal

patternQ∗
l=α∗

lSl + d∗
l is obtained. The pseudocode is provided

in Algorithm 1.

B. Collision-Free Path Planning Using an Iterative Controller

In the kth iteration (k ∈ N+, the time-step index of the
controller), Gl(k) and Q∗

l are assigned first, and then, through
coordination with the robots in Gl(k), and the robots in other
groups, the robot Rl

i(k) obtains the collision-free velocity and
updates its position. Repeat the iterative process until all Rl

i(k)
reach the assigned goals, and the pattern l is formed.

1) Goal Assignment: Although the allocation σ∗
l between Gl

and Q∗
l at the initial moment was achieved in Section IV-A,

Rl
i(k) needs to avoid collisions during its movement, which

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

3684 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

Algorithm 1 Generation of Optimal Pattern Q∗
l

Input:
Output: Q∗

l

1: Based on the function (12) and constraints (7) and (8),
σ∗

l and K∗ are calculated.
2: Based on the function (13) and constraints (16), (17),

and (18), α∗
l and d∗

l are computed.
3: Q∗

l = α∗
lSl + d∗

l

4: return Q∗
l

will cause Rl
i(k) to move away from the previously assigned

goal [20]. Thus, it is necessary to reassign Gl(k) and Q∗
l at the

beginning of each iteration. We assign −pl
i(k − 1)(ql

j)
T to kij

in the function (12) and adopt the auction algorithm to solve the
assignment model; then, we obtain the allocationσ∗

l (k) between
Gl(k) and Q∗

l .
2) Update Position With the Collision-Free Velocity: Based

on σ∗
l (k), we compute the preferred velocity vl

prefi(k) of Rl
i(k)

without considering the obstacles and other robots [15]:

vl
prefi(k) = Vp min

⎛
⎝1,

∥∥∥ql
σ∗

l(k,i)
− pl

i (k − 1)
∥∥∥

Kc

⎞
⎠vl

pqi
(k)

vl
pqi

(k) =
ql
σ∗

l(k,i)
− pl

i (k − 1)∥∥∥ql
σ∗

l(k,i)
− pl

i (k − 1)
∥∥∥ (19)

where the constant Vp > 0 is the maximum speed of the robot;
ql
σ∗

l(k,i)
is the optimal pattern goal assigned to Rl

i(k) in the

kth iteration; and pl
i(k − 1) is the position of Rl

i(k − 1). The
constant Kc ≥ Vpτ ensures convergence, and τ is the time step.

In multirobot and dynamic environments, Rl
i does not need

to consider other far away robots and obstacles when avoid-
ing collisions. Rl

i needs to consider only other Rj , j
= i,
j ∈ {1, . . ., N}, and obstacles in the neighbor region NRl

i [21].
K groups of pattern formation are completed in one area. Thus,
Rl

i should consider the robots in Gl and robots in other groups.
For Rl

i(k), based on the velocities and positions of the other
robots and obstacles in the NRl

i, the velocity obstacle space
RVOl

i(k) is obtained via the reciprocal velocity obstacles (RVO)
algorithm [21]. Rl

i(k) selects the velocity outside the RVOl
i(k)

and closest to vl
prefi(k) as the collision-free velocity vl

cfi(k).

RVOl
i(k)=

⋃
j∈NRl

i

RVOl
ij

(
vj (k − 1) ,vl

i (k − 1)
)

∪
⋃
o∈O

VOl
i (vo) (20)

where RVOl
ij(vj(k − 1),vl

i(k − 1)) and VOl
i(vo) are the ve-

locity obstacle spaces of Rl
i(k) relative to Rj(k) and static

obstacles in the NRl
i. RVOl

i(k) is the union of these velocity
obstacle spaces. vl

i(k − 1) and vj(k − 1), respectively, repre-
sent the velocity of Rl

i(k − 1) and that of its neighbors. vo = 0
represents the velocity of the static obstacle.

Algorithm 2 Collision-free Path Planning Using An Itera-
tive Controller

Input: Q∗
l

Output: pl
i(k)

1: repeat
2: Based on the function (12) with

kij = −pl
i(k − 1)(ql

j)
� and constraints (7) and (8),

σ∗
l (k) is obtained.

3: Based on the formula (19), vl
prefi(k) is computed.

4: Based on the formula (23), vl
cfi(k) is computed.

5: Based on the formula (24), update pl
i(k).

6: return pl
i(k)

7: until All Rl
i reach the assigned goals

The robot Rl
i in this article is the holonomic robot that

performs the continuous cycle of sensing and acting [20], [21].
We give a 2-D kinematic model as follows:⎧⎨

⎩
xl
i(k) = xl

i (k − 1) + vlix(k)τ
yli(k) = yli (k − 1) + vliy(k)τ
vl
i(k) = vl

i (k − 1) + ali(k)τ
(21)

where xl
i and yli are the plane position coordinates of the center

of the disk robot Rl
i; v

l
ix and vliy are the velocity components;

ali is the acceleration; and τ is the time step.
Each robot is subject to kinematic constraints. These con-

straints limit the choice of feasible velocities [21]. We set the
maximum speed of the robot not to exceed Vp and the maximum
acceleration not to exceed a, then the feasible velocities set is
AV l

i :

AV l
i =

{
(vl

i)
′ ∣∣ ∥∥(vl

i)
′∥∥<Vp ∧

∥∥(vl
i)

′ − vl
i

∥∥ < aτ
}
. (22)

In the kth iteration, the robot Rl
i selects the feasible velocity

outside the RVOl
i(k) and closest to vl

prefi(k) as the optimal
obstacle avoidance velocity vl

cfi(k) is

vl
cfi(k)= argmin

vl
i/∈RVOl

i(k),v
l
i∈AV l

i

∥∥vl
i − vl

prefi(k)
∥∥ (23)

whereAV l
i is the velocity set for which its maximum speed does

not exceed V P .
Rl

i(k) updates the position according to the following for-
mula:

pl
i(k) = pl

i (k − 1) + vl
cfi

(k)τ. (24)

Repeat the iterative process until all Rl
i reach the assigned

goals, and pattern l is formed.
The convergence guarantee for the robot reaching the assigned

goal can be found in [20]. The pseudocode is provided in
Algorithm 2.

The grouping-based optimization algorithm for multirobot
pattern formation mainly includes grouping and optimal pattern
formation. First, multiple robots are clustered into K groups
by minimizing the sum of square errors of K groups. After
that, each Gl performs the process of the optimal pattern forma-
tion in parallel. The proposed algorithm for multirobot pattern

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GROUPING-BASED OPTIMIZATION METHOD FOR MULTI-ROBOT SYSTEM PATTERN FORMATION 3685

formation ends when all groups complete their optimal pattern
formation. In the following, we measure the computational
complexity of the proposed algorithm.

C. Measuring Computational Complexity

The grouping-based optimization algorithm for multirobot
pattern formation mainly includes grouping and optimal pat-
tern formation. The grouping strategy refers to the K-MEANS
algorithm, and its computational complexity is O(N). After
the grouping is complete, each Gl achieves its optimal pattern
formation in parallel. The phase of the optimal pattern formation
includes Algorithms 1 and 2.

In the Algorithm 1, the optimal assignment σ∗
l (x

∗
ij)

and the minimum function value K∗ can be obtained in
O(N2

l log(max(kij)Nl)) using the auction algorithm [26].
The optimal pattern parameters α∗

l , d∗
l can be computed in

O(Nl) [17]. Therefore, the computational complexity of the
Algorithm 1 is O(N2

l log(max(kij)Nl)). The main compu-
tational complexity of the Algorithm 2 comes from the cal-
culation of the optimal assignment σ∗

l (k) at the beginning
of the iteration; thus, the computational complexity of the
Algorithm 2 is O(KlN

2
l log(max(kij)Nl)), where Kl is the

number of iterations to complete the pattern l formation.
Considering the computational complexity of Algorithms 1
and 2, the computational complexity of the optimal pattern
l formation is O((Kl + 1)N2

l log(max(kij)Nl)). The algo-
rithm’s computational complexity that all groups complete
their optimal pattern formation depends on the final group
that completes the optimal pattern formation. Therefore, the
computational complexity of the optimal pattern formation is
O((Kf + 1)N2

f log(max(kij)Nf)), where Kf and Nf are, re-
spectively, the number of iterations to complete the final pattern
formation and the number of robots forming the final pattern.

In contrast, the computational complexity of grouping is less
than the computational complexity of optimal pattern forma-
tion. Therefore, the computational complexity of the proposed
algorithm is O((Kf + 1)N2

f log(max(kij)Nf)).

V. SIMULATION AND ANALYSIS

We design several experiments of the multiletters pattern
formation using MATLAB 2016a with the CPLEX solver on
a computer (Windows 10, Intel Core i7-6700, CPU at 3.40 GHz
with 16.0 GB of RAM) to verify that the proposed algorithm
can effectively achieve optimization for the multirobot pattern
formation in an obstacle environment. First, we show the process
of multiletters pattern formation in the plane obstacle area to
demonstrate the feasibility of the proposed algorithm. Second,
we investigate the performance by comparing the runtime T
(the time from grouping to form all patterns) and the total travel
distance L (the total path sum of all robots to reach the goal)
of our grouping-based algorithm with those of the algorithm
without grouping. Finally, the time Ts for obtaining the optimal
patternQ∗ is compared between our proposed algorithm and the
algorithm in [17].

TABLE I
SIMULATION RESULTS UNDER THE ALGORITHM WITHOUT GROUPING AND

GROUPING-BASED ALGORITHM OVER 30 MONTE CARLO TRIALS

A. Process of Multiletters Pattern Formation in an Obstacle
Environment

A trial consists of randomly initializing 32 disk robots with
a radius of 1 unit and 2 static disk obstacles with a radius of
five units in a 45 × 45 unit area. The desired patterns are the
multiletters ZZU. Fig. 3 shows snapshots of the multiletters pat-
tern formation, where the black disk and the gray disk represent
the robot and the static obstacle, respectively. Fig. 3(a) and (b)
displays the grouping result in which 32 robots are clustered
into three groups and each group contains 11, 11, and 10 robots.
Fig. 3(c) presents the optimal pattern generation, where the
points represent the optimal pattern goals, which are the same
color as the corresponding group. Fig. 3(d) and (e) illustrates the
iterative collision-free path planning. Fig. 3(f) shows the final
multiletters ZZU pattern formation. The supplemental video
contains animated simulations of the trial.

Fig. 4 shows the position error of each robot relative to
the assigned goal, which indicates that each robot can reach
the assigned goal within a small error range. The significant
reduction in the position error of a robot in the figure occurs
because, at the beginning of the collision-free path planning,
the reassigned goal is closer to the robot than the previously as-
signed goal. When the environment is not crowded, the assigned
goals change less frequently. In Fig. 5, the convergence of the
position error sum of each group of robots is shown. The trial
demonstrates the feasibility and convergence of the proposed
algorithm.

B. Performance Comparison Between the Grouping-Based
Algorithm and Algorithm Without Grouping

We perform 30 Monte Carlo trials to compare the perfor-
mances of our algorithm in this article and the algorithm without
grouping [20]. Each trial consists of randomly initializing 32
disk robots with a radius of one unit in a 45 × 45 unit area with
two static disk obstacles with a radius of five units. The desired
patterns are the multiletters ZZU. We record the T and L of each
trial under our algorithm and the algorithm in [20]. The mean
and standard deviation of the trial results are reported in Table I.
From the experimental results, it can be seen that in terms of
the runtime T , our algorithm for forming patterns in parallel is
superior to the algorithm without grouping, reducing the mean
by 73.49%. In terms of the total distance L, our algorithm is also
better than the algorithm without grouping, reducing the mean
by 39.89%.

We attribute this to the fact that each group independently
solves its own optimal pattern Q∗ in our algorithm. The al-
gorithm without grouping takes multiple desired patterns as a

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

3686 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

Fig. 3. Snapshots of multiletters ZZU formation.

Fig. 4. Scatter plot of position error change of 32 robots in the process of
optimal pattern formation.

whole desired pattern S = {S1, . . .,SK}. Solving the whole
optimal pattern Q∗ also needs to meet the constraints of the
relative positions of multiple desired patterns in the whole
desired pattern. Then, the constraint increases and the feasible
region decreases, which leads to poor solution quality, that is, L
increases.

C. Time Comparison for Obtaining Q∗

We perform 30 repeated trials based on the same experimental
setup as in [17], where 600 robots form the multiletters UNCC.
In Fig. 6, we report the distribution in terms of the solution

Fig. 5. Scatter plot about the sum of the position errors of each group of
robots in the process of optimal pattern formation.

time Ts for the 30 trials, which displays the variability in the
solution time Ts over 30 repeated trials for identical initial
robot positions. We attribute this to the local convergence of the
grouping algorithm, which leads to different grouping results,
and then, affects the solution of the optimal patternQ∗. As shown
in Fig. 6, the solution time of our algorithm is shorter than that
of the algorithm in [17] where the solution time is 45 s. We
calculate Ts’s mean and standard deviation of Ts over the 30
trials, which are 22.1405 and 5.9854 s, respectively. The mean
solution time is reduced by 50.8%, compared with that in [17].

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GROUPING-BASED OPTIMIZATION METHOD FOR MULTI-ROBOT SYSTEM PATTERN FORMATION 3687

Fig. 6. Ts value distribution over 30 repeated trials.

VI. CONCLUSION

This article proposes a grouping-based algorithm of opti-
mization for the multirobot pattern formation in an environment
containing obstacles. Based on the specific grouping algorithm,
the randomly initialized multirobots are grouped. Each group
of robots first obtains its optimal pattern Q∗ independently in
parallel. Then, under an iterative controller, all robots in each
group reach the assigned optimal pattern goal position without
collision through coordination within and between groups to
achieve the optimal pattern formation. The simulation results of
the multiletters pattern formation verify the effectiveness of our
algorithm. A comparison with the algorithm without grouping
and the algorithm given in [17] illustrates the superior perfor-
mance of our algorithm. This article studies the optimization for
the pattern formation in a static obstacle environment. We use
an iterative optimization method, that is, decision-making and
execution, cyclically until the pattern is formed. Therefore, in
each iteration, dynamic obstacles are treated as static obstacles,
and the idea of iterative optimization can also be extended to
a dynamic obstacle environment. The experimental results also
show that the robots reach their goals at inconsistent times, which
causes the robot to waste time waiting. In future work, we will
consider addressing this situation.

The methodology presented here has been used for pattern for-
mation. However, its core is to solve the global optimal objective
function under the constraints of nonlinear inequalities. In the fu-
ture, we can adopt a fully distributed optimization method [30],
[31] to enhance the robustness of the algorithm, and extend
the optimization-based problem formulation in this article to
many other problems, including simultaneous localization and
grouping.

REFERENCES

[1] J. Lwowski, A. Majumdar, P. Benavidez, J. J. Prevost, and M. Jamshidi,
“Bird flocking inspired formation control for unmanned aerial vehicles us-
ing stereo camera,” IEEE Syst. J., vol. 13, no. 3, pp. 3580–3589, Sep. 2019.

[2] X. Luo, X. Li, X. Li, J. Yan, and X. Guan, “Globally stable formation
control of nonholonomic multiagent systems with bearing-only measure-
ment,” IEEE Syst. J., vol. 14, no. 2, pp. 2901–2912, Jun. 2020.

[3] J. Wu, H. Wang, N. Li, and Z. Su, “Formation obstacle avoidance: A fluid-
based solution,” IEEE Syst. J., vol. 14, no. 1, pp. 1479–1490, Mar. 2020.

[4] L. Ren et al., “An optimal task allocation approach for large-scale multiple
robotic systems with hierarchical framework and resource constraints,”
IEEE Syst. J., vol. 12, no. 4, pp. 3877–3880, Dec. 2018.

[5] M. Turpin, N. Michael, and V. Kumar, “Decentralized formation control
with variable shapes for aerial robots,” in Proc. IEEE Int. Conf. Robot.
Automat., 2012, pp. 23–30.

[6] Q. Li, “2019 world drone conference shenzhen held thousands of drones
unveiled.” Accessed: Jun. 21, 2019. [Online]. Available: http://sz.cnr.cn/
szfwgb/szyw/20190621/t20190621_524658879.shtml

[7] Z. Ma and S. Akella, “Coordination of droplets on light-actuated digital
microfluidic systems,” in Proc. IEEE Int. Conf. Robot. Automat., 2012,
pp. 2510–2516.

[8] V. Shekar, M. Campbell, and S. Akella, “Towards automated optoelec-
trowetting on dielectric devices for multi-axis droplet manipulation,” in
Proc. IEEE Int. Conf. Robot. Automat., 2013, pp. 1439–1445.

[9] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly
in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799,
2014.

[10] P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How,
“A distributed pipeline for scalable, deconflicted formation flying,” IEEE
Robot. Automat. Lett., vol. 5, no. 4, pp. 5213–5220, Oct. 2020.

[11] H. Yang, S. Cao, L. Bai, Z. Zhang, and J. Kong, “A distributed and parallel
self-assembly approach for swarm robotics,” Robot. Auton. Syst., vol. 118,
pp. 80–92, 2019.

[12] S. Jiang, J. Liang, J. Cao, J. Wang, J. Chen, and Z. Liang, “Decentralized
algorithm for repeating pattern formation by multiple robots,” in Proc.
IEEE 25th Int. Conf. Parallel Distrib. Syst., 2019, pp. 594–601.

[13] M. Coppola, J. Guo, E. Gill, and G. C. H. E. de Croon, “Provable
self-organizing pattern formation by a swarm of robots with limited
knowledge,” Swarm Intell., vol. 13, pp. 59–94, 2019.

[14] M. T. Abdullah, M. J. A. Sourov, S. Rahman, and S. Sarker, “Simulation
of pattern formation of swarm with minimum shape parameters,” in Proc.
Joint 9th Int. Conf. Inform., Electron. Vis./ 4th Int. Conf. Imag., Vis. Pattern
Recognit., 2020, pp. 1–6.

[15] Q. Wang, J. Huang, and X. Mao, “A fast self-organizing pattern formation
method for swarm robots in dynamic multi-region environments,” in Proc.
5th Int. Conf. Automat., Control Robot. Eng., 2020, pp. 124–129.

[16] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. A. Beard-
sley, “Image and animation display with multiple mobile robots,” Int. J.
Robot. Res., vol. 31, no. 6, pp. 753–773, 2012.

[17] G. Li, L. Dong, H. Xu, and Y. Lin, “Research on region coverage approach
with swarm robots,” Jiqiren/robot, vol. 39, no. 5, pp. 670–679, 2017.

[18] S. Agarwal and S. Akella, “Simultaneous optimization of assignments
and goal formations for multiple robots,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 6708–6715.

[19] J. C. Derenick and J. R. Spletzer, “Convex optimization strategies for
coordinating large-scale robot formations,” IEEE Trans. Robot., vol. 23,
no. 6, pp. 1252–1259, Dec. 2007.

[20] G. Raja, S. Anbalagan, V. S. Narayanan, S. Jayaram, and A. Ganap-
athisubramaniyan, “Inter-UAV collision avoidance using deep-q-learning
in flocking environment,” in Proc. IEEE 10th Annu. Ubiquitous Comput.,
Electron. Mobile Commun. Conf., 2019, pp. 1089–1095.

[21] F. Zhang, T. Wang, Q. Li, and J. Xin, “An iterative optimization approach
for multi-robot pattern formation in obstacle environment,” Robot. Auton.
Syst., vol. 133, no. 103645, pp. 1–12, 2020.

[22] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.
Automat., 2008, pp. 1928–1935.

[23] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognit.
Lett., vol. 31, no. 8, pp. 651–666, 2010.

[24] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[25] T. J. Van Roy and L. A. Wolsey, “Integer programming,” Wiley, 2009,
Art. no. 864. [Online]. Available: https://www.ibm.com/analytics/cplex-
optimizer

[26] ILOG, ILOG CPLEX User’s Manual, ILOG, 2002. [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[27] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,” Ann. Oper. Res., vol. 14, no. 1, pp. 105–123,
1988.

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

http://sz.cnr.cn/szfwgb/szyw/20190621/t20190621_524658879.shtml
http://sz.cnr.cn/szfwgb/szyw/20190621/t20190621_524658879.shtml
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

3688 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

[28] A. G. Richards and J. P. How, “Aircraft trajectory planning with colli-
sion avoidance using mixed integer linear programming,” in Proc. Amer.
Control Conf., 2002, pp. 1936–1941.

[29] R. Lazimy, “Mixed-integer quadratic programming,” Math. Program.,
vol. 22, no. 1, pp. 332–349, 1982.

[30] Z. Tian, W. Wu, and B. Zhang, “A mixed integer quadratic programming
model for topology identification in distribution network,” IEEE Trans.
Power Syst., vol. 31, no. 1, pp. 823–824, Jan. 2016.

[31] S. Li, Z. Wang, and Y. Li, “Using Laplacian Eigenmap as heuristic infor-
mation to solve nonlinear constraints defined on a graph and its application
in distributed range-free localization of wireless sensor networks,” Neural
Process. Lett., vol. 37, no. 1, pp. 411–424, 2013.

[32] S. Li, Y. Lou, and B. Liu, “Bluetooth aided mobile phone localization: A
nonlinear neural circuit approach,” ACM Trans. Embedded Comput. Syst.,
vol. 13, no. 4, pp. 1–14, 2014.

Tingting Wang received the B.S. degree in railway
traffic signal and control from the North University of
China, Taiyuan, China, in 2017, where she is currently
working toward the M.S. degree in control engi-
neering with the School of Electrical Engineering,
Zhengzhou University, Zhengzhou, China.

Her research interests include multiagent, pattern
formation, and nonlinear programming.

Fangfang Zhang received the B.E. degree in in
applied mathematics, the M.E. degree in applied
mathematics, and the Ph.D. degree in control science
and engineering from Shandong University, Jinan,
China, in 2008, 2011, and 2015, respectively.

He is currently an Associate Professor with
Zhengzhou University, Zhengzhou, China.

His research interests include optimal control of
multiagent systems, multirobot formation, and ma-
chine vision.

Jianbin Xin received the M.Sc. degree in control sci-
ence and engineering from Xi’an Jiaotong University,
Xi’an, China, in 2010, and the Ph.D. degree special-
ized in operational control of automated container
terminals from the Delft University of Technology,
Delft, Netherlands, in 2015.

He is currently an Associate Professor with the
School of Electrical Engineering, Zhengzhou Univer-
sity, Zhengzhou, China.

His research interests include modeling and control
of smart logistics systems and hybrid systems control.

Yanhong Liu received the B.E. degree in automation
from the Zhengzhou University of Light Industry,
Zhengzhou, China, in 1992, and the M.E. and Ph.D.
degrees in control science and engineering from Ts-
inghua University, Beijing, China, in 2002 and 2006,
respectively.

From 2012 to 2013, she worked as a Visiting
Scholar with the University of California at San
Diego, La Jolla, CA, USA. She is currently a Pro-
fessor with the School of Electrical Engineering,
Zhengzhou University, Zhengzhou. Her research in-

terests include nonlinear system modeling and control, robotic control, and
human–robot interactions and collaborations.

Authorized licensed use limited to: Zhengzhou University. Downloaded on September 29,2022 at 02:17:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

