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a b s t r a c t

Pattern formation for multi-robot systems has received increasing attention in different scenarios.
However, existing methods cannot efficiently optimize pattern formation in the obstacle environment.
To address this limitation, this paper proposes a new planning method that assigns the optimal goals
to the robots and iteratively computes collision-free paths to reach goal positions. Firstly, according to
the random initial position of the group robot and the arbitrary shape, convex quadratic programming
is used to minimize the distance to obtain the optimal pattern parameters under certain constraints.
Secondly, the iterative controller plans the collision-free path of each robot to the goal considering
a preferred velocity. Simulation results verified the effectiveness of the proposed methodology for
scenarios of letter formation, in comparison to a commonly-used method.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Recently, research on control of multi-robot systems has re-
eived extensive attention due to the development of wireless
ommunication technology, sensor technology, embedded com-
uting [1]. For multi-robot systems, pattern formation has great
esearch significance in various scenarios such as aerospace, mil-
tary, and disaster relief. The spacecraft, UAV, or mobile robots
orm specialized formations for area coverage, path search, and
oal search [2].
Pattern formation also can be frequently found in commer-

ial performances, and for instance, robot performances have
ecome a highlight in many organized important events. UAVs
r mobile robots equipped with LEDs of various colors display
arious patterns by changing formations [3,4]. Furthermore, the
deas of pattern formation also can be applied to the chip design
y modeling the droplets as robots to coordinate the droplets
utomatically. There, the goal formations are determined to fit
ithin the specified regions of the chip [5,6].
Most research on pattern formation is to study path planning

f swarm robots from their initial positions to the fixed target
ositions that are predefined [7–10]. In the literature [7], the
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image is converted into grayscales and then is divided into 9
grids of 3*3. The OpenCV is used to find out the centroid of each
grid and combining with manual adjustment to determine the
goal point. The robot moves to the goal, according to rules based
on the distribution of goals in each grid. The paper [8] uses the
leader-centered formation graph, the following robots align with
the virtual leader through a defined static vector to form the
desired pattern. And then a variable parameter is designed to
scale the exclusion vector field (RVF) [11] correctly to robustly
solve the problem of formation control and avoid collision under
the influence of external interference.

However, in practice, the goal positions are usually not pre-
defined, and the swarm robots need to form different formations
according to specific tasks [2]. Therefore, it is of great value to
obtain the goal pattern for the non-predefined target positions.
In this direction, some literature has studied optimizing goal
pattern generation in an obstacle-free environment [12–14]. The
pattern formation on optimizing goals generation is closely re-
lated to area coverage [15,16]. In these literatures , computational
geometry methods, e.g., Tyson diagrams, point clouds, can be em-
ployed to optimize goal positions. The algorithm proposed in [12]
realizes the pattern formation and animation display of large-
scale robots. The pattern goal is optimized using the method
proposed in Centroidal Voronoi Tessellations (CVTs) [17]. Its goal
generation algorithm relies on choosing an excellent initial goal
position, which not only leads to faster convergence but also gets
better deployment. The Optimal Reciprocal Collision Avoidance
(ORCA) algorithm [18] achieves collision-free paths to reach the
goal positions. The paper [13] computes the optimal matching
and pattern parameters based on the initial position of the group
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robot and makes the initial position between the robots, the
position between the goals at a certain distance to avoid the
collision.

Although these works of literature are helpful to pattern for-
mation for multi-robot systems, it is observed that these methods
for pattern formation cannot efficiently optimize pattern forma-
tion in the obstacle environment. To address this limitation, this
paper proposes an efficient algorithm for optimizing the pattern
formation in the obstacle environment. The main contributions of
this paper can be summarized as follows: First of all, in order to
obtain the optimal assignment and the optimal pattern param-
eters, we employ convex quadratic programming and establish
constraints based on the obstacle environment information to
minimize the distance. Then, we design an iterative obstacle
avoidance controller to drive the robot to the assigned goal with-
out collision. Simulation results demonstrate the potential of the
presented methodology against one commonly-used method.

The remainder of the paper is arranged as follows: Section 2
describes the problem and an overview of the proposed algo-
rithm. Section 3 computes the optimal matching and goal pattern
parameters to obtain the goal pattern in the obstacle environ-
ment. In Section 4, the iterative obstacle avoidance controller
determines collision-free paths of robots reach the goal positions.
Section 5 shows and analyzes the experimental simulation results
of the letter pattern. Section 6 is the conclusion of this paper.

2. Problem description

The research on optimization for multi-robot pattern forma-
tion in obstacle environment is significant. The purpose of the
paper is to propose an efficient algorithm to obtain the opti-
mal matching and pattern parameters then iteratively control
the robot to reach the goal without collision for optimizing the
formation in the obstacle environment. In this section, the pattern
formation research problem is introduced, and the overview of
the proposed algorithm for optimizing the pattern formation in
the obstacle environment is given.

In two-dimensional space, let there be n disk robots with
radius R. The initial position coordinates of the group robot are
represented by P = [p1; ...; pn]n×2, where pi = [xi, yi]1×2 repre-
sents the plane position coordinates of the robot i, i ∈ {1, . . . , n}.
The velocity of the robot i is vi =

[
vix, viy

]
1×2. The position co-

ordinates of m static obstacles with radius Ro are represented by
O = [o1; ...; om]m×2, where oj =

[
xoj , yoj

]
1×2

represents the plane
coordinates of the obstacle j, j ∈ {1, . . . ,m}. S = [s1; ...; sn]n×2
describes arbitrary given shape (letters, circles, rectangles, etc.),
where si =

[
xsi , ysi

]
1×2 represents the plane position coordinates

of the point i in given pattern. The generated goal pattern is
expressed as Q∗

= [q1; ...; qn], qi =
[
xqi , yqi

]
1×2 represents

the plane position coordinates of the generated pattern goal i.
The algorithm proposed in this paper mainly includes two steps,
and the algorithm process decomposition diagram is shown in
Fig. 1.

First of all, according to the initial position of the group robot
and the shape of the pattern, the optimal matching and goal
pattern parameters are computed in the obstacle environment
to obtain the goal pattern Q∗. Fig. 2 shows the goal pattern
generation of the letter O and the optimal matching. The small
circles represent the robots, the big circle labeled OB represents
the static obstacle, the star-shaped points constitute the given
shape S, the dots constitute the goal pattern Q∗, and the dashed
lines represent the matching of the robot to the assigned goal.

Secondly, based on the goal pattern, under the control of
the iterative obstacle avoidance controller, the robots reach the
assigned goal position in real-time without collision. The control

process consists of three steps, as follows:
Fig. 1. Algorithm overview: optimal goal pattern generation and iterative
obstacle avoidance controller.

Fig. 2. The goal pattern and optimal matching example.

(1) In each iteration, the robot does not always move along the
line to the assigned goal position in order to avoid collision
with obstacles or other robots, which may cause them to
move away from the initially assigned goal positions, thus
reassign is needed in each iteration.

(2) Based on the assigned goal, we compute the preferred
velocity vprefi [12] of the robot i toward the goal without
considering the obstacles and other robots.

(3) We adopt the Reciprocal Velocity Obstacles (RVO) to find
the optimal obstacle avoidance velocity vopti outside the
velocity obstacles and closest to the vprefi or select the
velocity with the minimal penalty as vopti [19], then update
the robot position. Until all the robots reach the ε (is a
small positive scalar close to 0) neighborhood of goal, the
algorithm ends.

. Optimal goal generation

The purpose of this section is to minimize the objective func-
ion (the sum of squared distance between the robots and the
oal positions) to obtain the optimal matching and pattern pa-
ameters, that is to optimize the path length of the multi-robot
attern formation. Then, the goal pattern Q∗ is obtained.
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3.1. System model

The model for optimal assignment and goal pattern parame-
ters is as follows:

min C(α, d, σ ) =

n∑
i=1

n∑
j=1

cijxij (1)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

xij = 1 j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

(2)

where

xij =

{
1,
0,

the robot i assigned to the goal j
the robot ino assigned to the goal j

cij = ∥pi − qj∥
2 (3)

qj = αsj + d (4)

C(α, d, σ ) =
∑n

i=1
∑n

j=1 cijxij is the objective function; cij is the
squared distance between the initial position pi of the robot i and
the position qj of the goal j; σ =

(
xij
)
n×n is the assignment matrix,

the mapping between the goal and the robot; sj =
[
xsj , ysj

]
1×2

is

the plane position coordinates of the point j in the given pattern;
α and d = [d1,d2]1×2 are the goal pattern parameters, α is the
scale parameter and α ∈ (0, ∞), d is the translation parameter.

Lemma 1. According to the formula (2), the double sum formula∑n
i=1
∑n

j=1 aixij, where ai is a constant only related to index i, can
be written as

n∑
i=1

n∑
j=1

aixij =

n∑
i=1

ai (5)

Proof. Since ai is only related to i, we can obtain

n∑
i=1

n∑
j=1

aixij =

n∑
i=1

⎛⎝ai
n∑

j=1

xij

⎞⎠ (6)

where
∑n

j=1 xij = 1, i = 1, . . . , n can be obtained based on
formula (2), then the formula

∑n
i=1
∑n

j=1 aixij =
∑n

i=1 ai. □

Lemma 2. According to the formula (2), the double sum formula∑n
i=1
∑n

j=1 bjxij, where bj is a constant only related to index j, can
be written as

n∑
i=1

n∑
j=1

bjxij =

n∑
j=1

bj (7)

Proof. Since a finite term double sum can swap the position of
the sum symbol, we can get

n∑ n∑
bjxij =

n∑ n∑
bjxij (8)
i=1 j=1 j=1 i=1
Similar to Lemma 1, further
n∑

i=1

n∑
j=1

bjxij =

n∑
j=1

n∑
i=1

bjxij

=

n∑
j=1

(
bj

n∑
i=1

xij

)

=

n∑
j=1

bj □

(9)

Lemma 3. The objective function of variables α, d and σ , can be
written as

C(α, d, σ ) =Mα2
− 2α

n∑
i=1

n∑
j=1

pisTj xij

+ 2αsdT
− 2pdT

+ nddT
+ N

(10)

where M, N, s, p are independent of α, d, σ .

Proof. Substituting formula (4) into formula (3), we can get

cij =x2i + y2i + α2(x2sj + y2sj ) − 2α(xixsj + yiysj )

+ 2α(xsjd1 + ysjd2) − 2(xid1 + yid2) + d21 + d22
=α2sjsTj − 2αpisTj + 2αsjdT

− 2pidT
+ ddT

+ pipT
i

(11)

Taking formula (11) into the objective function C(α, d, σ ) =∑n
i=1
∑n

j=1 cijxij and combining Lemmas 1, 2 we have

C(α, d, σ ) =

n∑
i=1

n∑
j=1

(
α2sjsTj xij − 2αpisTj xij + 2αsjdT xij

−2pidT xij + ddT xij + pipT
i xij
)

=α2
n∑

i=1

n∑
j=1

sjsTj xij − 2α
n∑

i=1

n∑
j=1

pisTj xij

+ 2α
n∑

i=1

n∑
j=1

sjdT xij − 2
n∑

i=1

n∑
j=1

pidT xij

+

n∑
i=1

n∑
j=1

ddT xij +
n∑

i=1

n∑
j=1

pipT
i xij

=α2
n∑

j=1

sjsTj − 2α
n∑

i=1

n∑
j=1

pisTj xij

+ 2α
n∑

j=1

sjdT
− 2

n∑
i=1

pidT

+

n∑
i=1

ddT
+

n∑
i=1

pipT
i

=Mα2
− 2α

n∑
i=1

n∑
j=1

pisTj xij + 2αsdT

− 2pdT
+ nddT

+ N

(12)

where M =
∑n

j=1 sjs
T
j , N =

∑n
i=1 pipT

i , s =
∑n

j=1 sj, p =
∑n

i=1 pi
are independent of α, d, σ . □

Lemma 4. Suppose the optimal assignment σ ∗
= argminσC (α, d,

σ ) at some values of α ∈ (0, ∞), d, then it is the optimal assignment
at any α ∈ (0, ∞), d.

Proof. Suppose σ ∗ is the optimal assignment at some values of
α ∈ 0, ∞ , d, we have the inequality subjecting to C α, d, σ ∗

≤
( ) ( )
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C (α, d, σ ) (σ is arbitrary matching matrix at the same α ∈

(0, ∞), d). According to formula (10), we can get

Mα2
− 2α

n∑
i=1

n∑
j=1

pisTj xij
∗
+ 2αsdT

− 2pdT
+ nddT

+ N

≤Mα2
− 2α

n∑
i=1

n∑
j=1

pisTj xij + 2αsdT
− 2pdT

+ nddT
+ N

(13)

ue to α ∈ (0, ∞), it can be obtained by formula (13):
n∑

i=1

n∑
j=1

−pisTj (xij)
∗

≤

n∑
i=1

n∑
j=1

−pisTj (xij) (14)

he inequality (14) is independent of α, d. It implies that if the
nequality C (α, d, σ ∗) ≤ C (α, d, σ ) at some value of α ∈ (0, ∞),
is established, that is, σ ∗ is the optimal matching at any value
f α ∈ (0, ∞), d. □

Further, by formula (14), let a pseudo cost kij = −pisTj and the
ew model can be established:

min K (σ ) =

n∑
i=1

n∑
j=1

kijxij

=

n∑
i=1

n∑
j=1

(
−pisTj

)
xij

(15)

nd the constraint is still (2).
To solve the above model (15), the Hungarian algorithm [20]

an be used to obtain the optimal assignment σ ∗ and the new
bjective function minimum value K ∗. σ ∗ is also the optimal
ssignment of the original objective function C .

onclusion 1. At the optimal assignment σ ∗, the original objective
function:

C(α, d, σ ∗) =Mα2
+ 2αK ∗

+ 2αsdT
− 2pdT

+ nddT
+ N (16)

(16) is a quadratic strict convex function of the variables α, d.

Proof. The Hessian matrix of the formula (16) is:

H =

[M Xs Ys
Xs n 0
Ys 0 n

]
(17)

where Xs =
∑n

j=1 xsj , Ys =
∑n

j=1 ysj . The sequential principal
minors of the matrix are:
D1 = M

D2 = nM − X2
s

=

n∑
i=1

n∑
j=i+1

(
xsi − xsj

)2
+ n

n∑
j=1

y2sj

D3 = n2M − nX2
s − nY 2

s

= n

⎡⎣ n∑
i=1

n∑
j=i+1

(
xsi − xsj

)2
+

n∑
i=1

n∑
j=i+1

(
ysi − ysj

)2⎤⎦
= n

n∑
i=1

n∑
j=i+1

si − sj
2

(18)

The values of the sequential principal minors are positive, so
the Hessian matrix (17) is a positive definite matrix, and (16) is
a quadratic strict convex function. □

The problem of computing the optimal parameters α, d, is
transformed to solve the nonlinear programming problem. The
formula (16) is the objective function of the nonlinear program-
ming, [α, d] are independent variables.
3.2. System constraints

We consider system constraints based on the obstacle envi-
ronment information. In this paper, the constraints of the system
need to meet three requirements for reaching the goal without
collision:

(1) The generated goal pattern positions should be in the ap-
plication area;

(2) The generated goal pattern positions should not be in the
obstacles;

(3) The generated goal pattern positions should ensure that the
distance between them maintains at least two robot radius.

The requirements (2) and (3) are to ensure that the robot can
reach the goal positions without collision and complete pat-
tern formation. The mathematical model of the constraint is
established according to the above three requirements.

Consider formula (4), the goal qj =
[
xqj , yqj

]
, where{

xqj = αxsj + d1
yqj = αysj + d2

j = 1, . . . , n (19)

Subject to condition (1), we have{
Xmin + R ≤ xqj ≤ Xmax − R
Ymin + R ≤ yqj ≤ Ymax − R

⇒

{
Xmin + R ≤ αxsj + d1 ≤ Xmax − R
Ymin + R ≤ αysj + d2 ≤ Ymax − R

(20)

where Xmin, Xmax are the minimum and maximum boundary of
the application area on the X axis, respectively; Ymin, Ymax are the
minimum and maximum boundary of the application area on the
Y axis, respectively.

Since α ∈ (0, ∞), the boundary points in the given pattern
Sn×2 still are the boundary points after scale and translation, so
the constraint (20) can be equivalent to:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αmax
(
xsj
)
+ d1 ≤ Xmax − R

αmin
(
xsj
)
+ d1 ≥ Xmin + R

αmax
(
ysj
)
+ d2 ≤ Ymax − R

αmin
(
ysj
)
+ d2 ≥ Ymin + R

(21)

Compared with the formula (20), the formula (21) can reduce
the number of constraints and accelerate the convergence of the
algorithm, especially for large-scale robots.

Subject to condition (2), combining with the formula (19), we
have
∥qj − oi∥ ≥ Ro+R ⇒√[(

αxsj + d1
)
− xoi

]2
+
[(

αysj + d2
)
− yoi

]2
≥ Ro+R

(22)

here qj is the position coordinates of the goal j; oi is the
osition coordinates of the static obstacle i; Ro, R are the radius
f the obstacles and the robot, respectively. j ∈ {1, . . . , n}, i ∈

{1, . . . ,m}.
Formula (22) is a nonlinear inequality constraint and is a non-

convex set, and then the above optimization problem belongs to
non-convex optimization. The non-convex optimization problem
has the complexity of solving and the possibility of no global
optimal solution. Therefore, it is necessary to scale nonlinear
constraints to linear constraints.

We approximate the circle obstacle into a circumscribed
square, as shown in Fig. 3. In this way, the constraint (22) about
the Euclidean distance between the goal point and the center
of the static obstacle is scaled to the constraint (23) about the
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Fig. 3. An approximate model of a disk obstacle.

absolute value of the distance difference between the goal point
and the center of the static obstacle on the X and Y axes.{⏐⏐αxsj + d1 − xoi

⏐⏐ ≥ Ro + R⏐⏐αysj + d2 − yoi
⏐⏐ ≥ Ro + R

(23)

Then, we introduce binary variables to transform the nonlinear
constraints (23) into linear constraints [21]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αxsj + d1 − xoi ≥ Ro + R − FBij (1)
xoi −

(
αxsj + d1

)
≥ Ro + R − FBij (2)

αysj + d2 − yoi ≥ Ro + R − FBij (3)
yoi −

(
αysj + d2

)
≥ Ro + R − FBij (4)

4∑
w=1

Bij(w) ≤ 3

(24)

j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}. Bij (w) is the introduced binary
variable and has a value of 1 or 0, w ∈ {1, 2, 3, 4}; F is a positive
value and is much larger than Ro + R. When Bij(w) = 0, the wth
constraint of the formula (24) satisfies the corresponding position
coordinate difference not less than Ro + R. When Bij(w) = 1, the
wth constraint of the formula (24) is relaxed.

∑4
w=1 Bij(w) ≤ 3

ensures that the coordinate difference constraint is not relaxed
beyond three positions, at least one direction must satisfy the
coordinate difference constraint.

Subject to condition (3), we have

∥qi − qj∥ ≥ 2R

⇒ [(αxsi − αxsj )
2
+ (αysi − αysj )

2
] ≥ 4R2

⇒ α2
[(

xsi − xsj
)2

+
(
ysi − ysj

)2]
≥ 4R2

⇒ αmin
si − sj

 ≥ 2R, i ̸= j, i, j ∈ {1, . . . , n}

(25)

onclusion 2. Based on the linear constraints (21), (24), (25),
nd the objective convex quadratic function (16), the computing
ptimal goal pattern parameters problem is transformed into solving
convex quadratic programming problem under convex constraint.

Since the convex quadratic programming problem has a global
ptimal solution [22], we can use the CPLEX optimization soft-
are [23] to find the global optimal goal pattern parameters α∗,
∗, and then obtain the optimal goal pattern Q∗.
Next, we will design an iterative obstacle avoidance control

ethod to drive the robot to the goal without collision.

. Collision-free path planning

This section details how the iterative controller regulates the
obots to reach their goals without collision. Following the assign-
ent obtained from the prevision section, the preferred velocity
f each robot is first computed, and the optimal collision-free
elocity is then obtained.
The iterative obstacle avoidance planning process is Algorithm
. In the kth iteration (k ∈ N, the time-step index of the con-
roller), the controller first determines if there are any robots that
ave not reached the ε neighborhood of goal. If so, the optimal
ssignment σ ∗

k is calculated. Then, for robot i that has not reached
he assigned goal (

qσ∗
k (i) − pk−1

i

 > ε), its preferred velocity vk
prefi

nd optimal obstacle avoidance velocity vk
opti

are computed. Based
n the vk

opti
, the robot i updates its position. The above steps are

epeated until all the robots reach the ε neighborhood of goal. The
lgorithm ends. The primary process of the algorithm is divided
nto the following three steps.

Algorithm 1 The Iterative Obstacle Avoidance Controller
1: In the k-th iteration;
2: while exist robot no reach the ε neighborhood of goal. do
3: Compute σ ∗

k ;
4: for each i ∈ [1, n] do
5: if

qσ∗
k (i) − pk−1

i

 ≤ ε then
6: continue;
7: else
8: Compute vk

prefi
;

9: Compute vk
opti

;
0: Update pk

i ;
1: end if
2: end for
3: k = k + 1;
4: end while

4.1. Goal assignment

Based on the initial positions of the group robot, the optimal
assignment σ * has been obtained in Section 3, but the robot
does not always move straight to the assigned goal position. It
may be away from the assigned goal in order to avoid collision
with obstacles or other robots. Thus, reassign is needed. Based
on the goal pattern Q∗, we can make a new pseudo cost kij =

−pk−1
i qT

j , where pk−1
i is the position coordinates of the robot i in

the (k− 1)th iteration, i ∈ {1, . . . , n}, j ∈ {1, . . . , n}. Based on the
model (15) and the constraint (2), the optimal assignment σ ∗

k is
obtained according to the Hungarian algorithm.

4.2. Compute the preferred velocity

Based on the optimal assignment σ ∗

k , we compute the pre-
ferred velocity vk

prefi
toward the goal without considering the

obstacles and other robots.

vk
prefi

= Vp min(1,
∥qσ∗

k (i) − pk−1
i ∥

Ka
)

qσ∗
k (i) − pk−1

i

∥qσ∗
k (i) − pk−1

i ∥
(26)

where Vp is the maximum speed of the robot; qσ∗
k (i) is the goal

position coordinates assigned to the robot i; Ka > 0 ensures
convergence, and it needs to satisfy Ka ⩾ Vpτ [12], where τ is
the time step.

4.3. Compute the optimal obstacle avoidance velocity and update
position

The RVO algorithm proposed in Ref. [19] realizes that the robot
reaches the goal position without collision.

Given the current position coordinates pi and the current
velocity v of the disk robot i. Defining the velocity obstacles
i
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Fig. 4. The velocity obstacles VOi
j

(
vj
)
of disk robot i relative to disk robot j.

Oi
j

(
vj
)
is the velocity set consisting of all those velocities vi for

obot i that will cause a collision with the robot j moving with
elocity vj at some time in the future. The geometric definition of
he velocity obstacles as follows.

efinition 1. Velocity Obstacles

VOi
j

(
vj
)

=
{
vi|λ

(
pi,vi − vj

)
∩ B ⊕ −A ̸= ∅

}
(27)

here A represents a set of circular regions with pi as the center
nd R as the radius; B represents a set of circular regions with pj
s the center and R as the radius; A⊕B represents the Minkowski
um of A and B; −A represents A reflected in its reference point,
.e.,

⊕ B = {a + b|a ∈ A, b ∈ B} (28)

− A = {−a|a ∈ A} (29)

(p, v) is the ray with p as the starting point and v as the
irection:

λ (p, v) = {p + tv|t ⩾ 0} (30)

The geometric representation is shown in Fig. 4. If the ray with
he starting point pi and the direction vi−vj intersects the B⊕−A
egion centered at pj, then vi is in the velocity obstacles region
elative to the robot j.

When vi ∈ VOi
j

(
vj
)
, the robot i and the robot j will collide

t some time later if the robot i moves with the velocity vi, the
obot j moves with the velocity vj. So in order to avoid collision
etween robot i and j, the velocity vi should be selected outside
he velocity obstacles, vi /∈ VOi

j

(
vj
)
.

When the robot i selects the candidate velocity v′

i outside
Oi
j

(
vj
)
and the robot j selects the candidate velocity v′

j out-
ide VOj

i (vi) to avoid collisions with each other, the undesirable
scillatory motions will occur. Therefore we use RVO.

RVOi
j

(
vj, vi

)
=
{
v′

i|2v
′

i − vi ∈ VOi
j

(
vj
)}

(31)

n multi-robot and static obstacle environments, the RVOi for the
obot i:

RVOi =

⋃
j̸=i

RVOi
j(vj, vi) ∪

⋃
o∈O

VOi
o (vo) (32)

here O is the static obstacle coordinate set; vo is the velocity of
he static obstacle, vo = 0.

The robot in this paper is the holonomic robot that performs
he continuous cycle of sensing and acting [18,19]. We give the
inematic model in two-dimensional plane:⎧⎪⎨⎪⎩
xk+1
i = xki + vk

ixτ

yk+1
i = yki + vk

iyτ

k+1 k k

(33)
vi = vi + ai τ
where xi, yi is the plane position coordinates of the center of the
disk robot; vix, viy is the velocity component; ai is the accelera-
tion; τ is the time step.

Each robot i is subject to kinematic constraints. These con-
straints limit the choice of feasible velocities [19]. We set the
maximum speed of the robot not to exceed Vp and the maximum
acceleration not to exceed a, then the feasible velocities set is AVi:

AVi =
{
v′

i

⏐⏐v′

i

 < Vp ∧
v′

i − vi
 < aτ

}
(34)

Ideally, in the kth iteration, robot i selects the feasible velocity
utside the RVOk

i and closest to vk
prefi

as the optimal obstacle
voidance velocity vk

opti
:

vk
opti

= argmin
vi /∈RVOk

i ,vi∈AVi

∥vi − vk
prefi

∥ (35)

However, the environment is so dense that the feasible veloc-
ties set AVi ⊂ RVOi, and vkopti cannot be calculated by formula
35). To solve this problem, we select a velocity inside RVOi, but
he velocity is penalized by this choice. Refer to literature [19],
he penalty of the velocity vi is given:

penaltyki (vi) = ωk
i

1
tcki (vi)

+
vkprefi − vi

 (36)

here ωk
i can vary among the agents to reflect differences in

aggressiveness and sluggishness; tcki (vi) is the expected time to
collision. For detailed description and calculation of parameters,
see [19]. We select the velocity with the minimal penalty in the
AVi as the optimal collision avoidance velocity:

vkopti = argmin
vi∈AVi

penaltyki (vi) (37)

If AVi ̸⊂ RVOi, we obtain vkopti according to formula (35),
otherwise according to formula (37), which can avoid the robot
from sticking in equilibrium point.

Then robot i updates its position:

pk
i = pk−1

i + vk
opti

τ (38)

is the time step.

onclusion 3. (1) Based on the position Pk−1
n×2 of the robots in the

(k − 1)th iteration and the goal Q∗, the optimal assignment σ ∗

k in
the kth iteration is obtained according to the Hungarian algorithm;
(2) based on σ ∗

k , we compute the preferred velocity vk
prefi

toward

the assigned goal without considering obstacles and other robots
by formula (26); (3) according to the RVO algorithm, we compute
the optimal obstacle avoidance velocity vk

opti
closest to the preferred

velocity vk
prefi

by formula (35) or select the velocity with the minimal
penalty by formula (37); (4) above steps are repeated until all the
robots reach the ε neighborhood of goals. The algorithm ends.

Theorem 1. The convergence of the robot reaching to the assigned
goal is guaranteed.

Proof. In the kth iteration, the robot i selects the collision avoid-
ance velocity that is close to the preferred velocity vkprefi calculated
by formula (26). According to the formula (26), we can obtain the
vkprefiτ :

vkprefiτ = min(
Vpτqσ∗

k (i) − pk−1
i

 ,
Vpτ

Ka
)
(
qσ∗

k (i) − pk−1
i

)
(39)

here Ka ≥ Vpτ , further, we can get the following formula:

Ka ≥ Vpτ ⇒
Vpτ

≤ 1 (40)

Ka
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w

w

There are two cases 1⃝ and 2⃝ in the process of robot move-
ment, and we comprehensively discuss these two cases.

1⃝ When
qσ∗

k (i) − pk−1
i

 ≥ Vpτ , we can get :

Vpτqσ∗
k (i) − pk−1

i

 ≤ 1 (41)

Combining the formula (40), the formula (39) is equal to:

vkprefiτ = Kc

(
qσ∗

k (i) − pk−1
i

)
(42)

where Kc ≤ 1.
2⃝ When

qσ∗
k (i) − pk−1

i

 ≤ Vpτ , we can get:

Vpτqσ∗
k (i) − pk−1

i

 ≥ 1 (43)

Combining the formula (40) and (43), we can obtain Vpτqσ∗
k (i)−pk−1

i


≥

Vpτ
Ka

, so the formula (39) is equal to:

vkprefiτ =
Vpτ

Ka

(
qσ∗

k (i) − pk−1
i

)
= Kc

(
qσ∗

k (i) − pk−1
i

) (44)

where Kc ≤ 1.
Synthesizing the derivation of 1⃝ and 2⃝, we can obtain:

vkprefiτ = Kc

(
qσ∗

k (i) − pk−1
i

)
(45)

here Kc ≤ 1.
The robot i updates its position:

pk
i = pk−1

i + vkprefiτ

= pk−1
i + Kc

(
qσ∗

k (i) − pk−1
i

) (46)

here Kc ≤ 1. The formula (46) implies
(
qσ∗

k (i) − pk
i

)
and(

qσ∗
k (i) − pk−1

i

)
are collinear vectors,

qσ∗
k (i) − pk

i

 ≤qσ∗
k (i) − pk−1

i

 and
qσ∗

k (i) − pk
i

 ≥ 0. Therefore
qσ∗

k (i) − pk
i

 is

monotonically decreasing and has lower bound, the convergence
of the robot reaching to the assigned goal is guaranteed. □

Corollary 1. The robot reaching the ε neighborhood of the assigned
goal in finite time can be guaranteed.

Proof. When the robot i approaches the assigned goal qσ∗
k (i),qσ∗

k (i) − pk−1
i

 ≤ Vpτ , and Ka ≥ Vpτ , we can get:

qσ∗
k (i) − pk−1

i

 ≤ Ka ⇒

qσ∗
k (i) − pk−1

i


Ka

≤ 1 (47)

According to the formula (47), the formula (26) can be written as:

vkprefi = Vp min(1,
∥qσ∗

k (i) − pk−1
i ∥

Ka
)

qσ∗
k (i) − pk−1

i

∥qσ∗
k (i) − pk−1

i ∥

= Vp
∥qσ∗

k (i) − pk−1
i ∥

Ka

qσ∗
k (i) − pk−1

i

∥qσ∗
k (i) − pk−1

i ∥

=
Vp
(
qσ∗(i) − pk−1

i

)
(48)
Ka k
where Vp and Ka are positive constants. Let K =
Vp
Ka

> 0, further:vkprefi = K
qσ∗

k (i) − pk−1
i

 (49)

The formula (49) indicates that
vkprefi is proportional to the

distance toward assigned goal.
We convert the discrete system (49) into a continuous system

for analysis. Suppose the path function of the robot i concerning
time t is si (t), and the total distance to the assigned goal is d (a
positive constant). We can get:

si (t) =

∫ t

t0

vtprefi dt (50)

According to the formula (49), further:

si (t) =

∫ t

t0

K [d − si (t)] dt ⇒ ṡi (t) = Kd − Ksi (t) (51)

Solving the linear differential equation (51), we can get:

si (t) = d − de−Kt

⇒ei (t) = d − si (t) = de−Kt (52)

where ei (t) is the distance to the assigned goal. Easy to get:

lim
t→∞

ei (t) = 0 (53)

From the formula (53), asymptotic convergence is guaranteed.
For the discrete control system, the sampling period is τ . ∃M ∈

N, according to the formula (49) and (52), The speed at time M
is:vMprefi = Kde−KMτ (54)

From M to M + 1, the path length of the robot i is:vMprefi τ = Kde−KMτ τ (55)

Always ∃ε such that
vMprefi τ = Kde−KMτ τ > ε and M

vMprefi
τ > d − ε.

Therefore the robot reaching the ε neighborhood of the as-
signed goal in finite time can be guaranteed. □

Algorithm 2 expresses the complete process of the optimiza-
tion of multi-robot pattern formation. First, the optimal matching
σ ∗ and the goal pattern parameters α∗, d∗ are computed in
the obstacle environment to obtain the goal pattern Q∗. Second,
under the control of the iterative obstacle avoidance controller,
the robots reach the assigned goal position in real-time without
collision. The algorithm ends, and the pattern is formed until all
the robots reach the ε neighborhood of goal.

Below we will design experiments to verify the feasibility
and the effectiveness of the proposed algorithm in the obstacle
environment.

5. Experimental results and analysis

In this section, simulation experiments and results show the
performance of the proposed algorithm. The algorithm proposed
in this paper is to optimize the goal pattern parameters, then
iteratively assign the goals and control multi-robots to reach
the assigned goal without collision, under the presence of ob-
stacles. The experiment of generating reachable goals illustrates
the algorithm optimizes the goal in the obstacle environment.
The experimental results of forming a single letter show the
effectiveness and convergence of the algorithm in achieving pat-

tern formation. The performance of the optimal goal pattern
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Algorithm 2 The Optimization of Multi-Robot Pattern Formation
Algorithm
1: // Optimal Goal Generation
2: Compute σ ∗;
3: Compute α∗, d∗;
4: Obtain Q∗;
5: // The iterative obstacle avoidance controller
6: In the k-th iteration;
7: while exist robot no reach the ε neighborhood of goal. do
8: Compute σ ∗

k ;
9: for each i ∈ [1, n] do
0: if

qσ∗
k (i) − pk−1

i

 ≤ ε then
1: continue;
2: else
3: Compute vk

prefi
;

4: Compute vk
opti

;
5: Update pk

i ;
6: end if
7: end for
8: k = k + 1;
9: end while

Fig. 5. The unreachable goal generation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

parameters obtained by the proposed algorithm and the perfor-
mance of other parameters are compared and analyzed, which
verifies the optimization of parameters by the algorithm. The
comparison of experimental results between iterative match and
traditional one-time match verifies the optimization of the algo-
rithm on match. Finally, the algorithm is extended to the pattern
formation of multiple letters experiments, and the changes in
algorithm performance with the changes in the number of robots
are analyzed.

We designed several experiments using Matlab 2016a with
CPLEX optimization software on the computer (Windows 10,
Intel(R) Core(TM) i7-6700, CPU @ 3.40 GHz with 16.0 GB RAM).
We recorded and analyzed the experimental data. T : solve the
opt
Fig. 6. The reachable goal generation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. The trajectory of nine robots forming the letter C pattern.

optimal goal pattern time; K : the total number of iterations of
ll robots reaching the goal positions; T : total running time of

all robots reaching the goal positions; L: total path length of all
robots.

5.1. Reachable goal generation

A goal generation model built under no obstacle environment
includes obstacle positions in the feasible region [13], which may
result in the goal position is generated in the obstacle zone. As
shown in Fig. 5, the red circle and blue circle marked with OB
indicate static obstacles. Nine different colored dots labeled 1 to
9 represent the generated goal positions. The blue and green goals
positions are in the obstacle, which will cause the robot cannot
reach the goals. However, based on the algorithm proposed in this
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Fig. 8. Position error.

Fig. 9. Pattern C formation.

paper, the optimized goal generation model removes obstacle po-
sition information out of the feasible region to generate reachable
goals, as shown in Fig. 6. The potential case where a goal position
is in an obstacle zone will not appear in the next experiments.

5.2. Pattern of a single letter

5.2.1. Experiment 1
Suppose there are two static disk obstacles with a radius of 2

in a square area with an application region of [−12, 12; −12, 12]
Fig. 10. The goal match changes.

Fig. 11. Position error.

and nine disk robots with a radius of 1 form the letter pattern
C . As shown in Fig. 7, the robots represented by nine different
colors circles labeled 1 to 9 move from the random initial position
to the assigned goal of the corresponding color without collision,
and then the robots form the letter C . The time of solving the
optimal goal pattern Topt = 2.98 s, the total number of iterations
K = 31, the total running time T = 7.954 s, the total path
length L = 35.11. Then we analyzed the position error between
the nine robots and the assigned goal positions. As shown in
Fig. 8, the nine dashed lines labeled 1 to 9 indicate the change
in position errors of the corresponding robots. After 31 iterations,
the position errors of the nine robots converge to ε neighborhood
of 0.

5.2.2. Experiment 2
In order to show that the path and time of our design method

are the shortest, three groups of forming single letter experiments
based on different random positions are designed. The initial
conditions (initial positions of the robots, positions of obstacles,
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Table 1
The performance comparison of the optimal pattern parameters with any other
pattern parameters.

K T L

1

α∗
= 1.1389, d∗

= [1.8177, 0.3099] 42 10.81 38.09
α= 1, d = [2, 0.3] 48 12.76 39.87
α= 1.3, d = [2, 0.3] 48 12.16 40.68
α= 1.2, d = [3, 0.3] 43 11.03 38.63

K T L

2

α∗
= 1.0088, d∗

= [3.0148, −1.7201] 36 10.69 43.49
α= 1, d = [3, 0] 40 11.53 48.87
α= 1.1, d = [3, −1] 38 10.85 44.54
α= 1.1, d = [3.5, −0.5] 41 12.17 47.31

K T L

3

α∗
= 0.9626, d∗

= [0.2864, −3.0989] 36 8.47 29.05
α= 1, d = [2, 0.3] 33 8.78 35.33
α= 1.3, d = [2, 0.3] 31 8.65 31.37
α= 1.2, d = [3, 0.3] 29 8.54 29.12

Fig. 12. Total position error.

region size, desired pattern, etc.) in the same set of experiments
are the same. The initial conditions in the different set of ex-
periments are different. In each set of experiments, we obtained
the optimal goal pattern parameters α∗, d∗ and recorded the
orresponding K , L, T to compare with K , L, T obtained from
any other parameters that can generate reachable goal. As shown
in Table 1, regardless of the initial position, in each set of ex-
periments, the performance of the optimal parameters is better
than the performance of other parameters, especially in total path
length.

5.2.3. Experiment 3
In order to show that the iterative match used in this paper

can find the shortest path compared to the traditional one-time
match [1,13], we did experiments of forming a single letter for the
two match methods, respectively. Fig. 9 presents the snapshots
of position update and goal assignment of multiple robots, based
on the iterative match. Fig. 10 displays the snapshots of the goal
match changes. At k = 4, as the existence of obstacles, robot 2
needs to avoid collision with the obstacle and stays away from
the assigned goal. Therefore, at k = 5, the goal match changes
after reassignment, robot 1 and robot 2 exchange goal.

We analyzed the position error of each robot and the sum of
the position errors of all robots. As shown in Fig. 11, at k = 5, as
Fig. 13. The trajectory of nine robots forming the letter C pattern.

Fig. 14. Pattern ZZU formation.

the change of the target of the robot 1, 2, the position error of the
robot 1 suddenly increases, and the position error of the robot 2
suddenly decreases. Although the increasing amplitude of robot
1 is greater than the decreasing amplitude of robot 2, the sum of
position errors is decreased, as shown in Fig. 12.

Fig. 13 presents the trajectories of robot forming letter C under
terative match and traditional one-time match, respectively. We
ecorded the L = 33.75, K = 43 and T = 10.55 corresponding
to the iterative match and the L = 49.43, K = 75 and T =
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20.64 corresponding to the one-time match, which illustrates that
the iterative match has better performance than the traditional
one-time match.

5.3. Pattern of multiple letters

5.3.1. Experiment 4
Suppose there are two static disk obstacles with a radius of 6

in a square area with an application region of [−40, 40; −40, 40]
and 25 disk robots with a radius of 2 to form the pattern ZZU, as
shown in Fig. 14. After 125 iterations, the pattern is formed. The
pattern solution time Topt = 3.36 s, the total running time T =

158 s, the total number of iterations K= 125, and the total path
length L = 454.54. Compared with the experiments of 9 robots,
the solution goal time Topt of the 25 robots increases less, but
the total running time T increases significantly, which is because
the iterative obstacle avoidance controller adopts the Hungarian
algorithm its complexity is O(n3) that the amount of calculation
increases exponentially as the number of robots increases.

6. Conclusions and future research

This paper proposes an iterative optimization approach for
multi-robot pattern formation in an obstacle environment. The
proposed approach obtains the optimal pattern parameters, then
iteratively assigns the goals and plans a collision-free path for
each robot to reach the goal position. We carry out simulation
experiments for pattern formations of a single letter and multiple
letters. The study concludes that the proposed approach effi-
ciently addresses the optimization for pattern formation problem
multi-robot systems in the obstacle environment, compared to a
commonly-used method.

In the future, we will consider developing distributed algo-
rithms for the scenario of large-scale robots to improve overall
computational efficiency. The algorithm proposed in this paper
is limited to the static obstacle environment, and an improved
algorithm will be applied to the dynamic environment in the
future.
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