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Abstract This paper proposes an adaptive neural
impedance control (ANIC) strategy for electrically
driven robotic systems, considering system uncertain-
ties and external disturbances. For the considered
robotic system, the joint velocities and armature cur-
rents are assumed to be unknown and unmeasured,
and an adaptive observer is then designed to estimate
its unknown states using a neural network. Based on
the observed joint velocities and armature currents, an
ANIC scheme is proposed and the performances of
the joint positions and force tracking can be improved.
We also prove that the control system is stable and all
the signals in closed-loop system are bounded. Simula-
tion examples on a two-link electrically driven robotic
manipulator are presented to show the effectiveness
of the proposed observer-based intelligent impedance
control method.
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1 Introduction

Robotic manipulators that are driven by the motors
are usually referred to as electrically driven robotic
manipulators (EDRM), and the voltages of the motors
are control inputs of robotic manipulators [1,2]. It is
pointed out that the relationship between the joint sub-
system and the motor subsystem should not be ignored
in the controller design [3]. If the motor dynamics
is not considered, the control performance will be
decreased. However, the robotic control system will
become more complex provided that the relationship
between the motor voltages and the torques is con-
sidered. For this integration, several powerful control
methods have been developed to control the EDRM to
achieve high performances.

As an intelligent method, neural network (NN) has
beenwidely utilized to derive the intelligent-based con-
troller for nonlinear systems with unknown dynamics
[4–10]. In [4], an adaptive NN back-stepping controller
was proposed to control a rigid link EDRM with the
uncertainties of the mechanical and electrical dynam-
ics. In [7], NN and adaptive bound part were com-
bined with the model-based controller to achieve tra-
jectory tracking for the redundant robot manipulator
at the actuator level, and the proposed controller could
guarantee that the trajectory tracking errors and subtask
tracking errors were converged to zero, where the DC
motors were controlled to provide the required torques
for each joint. For the unknown system dynamics and
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state constraints, He and Dong [11] proposed a fuzzy
NN learning algorithm to identify uncertain system
model without knowing the uncertainty and a sufficient
amount of data observed in advance. Also, Zhang et
al. [12] proposed a NN-based full-state feedback con-
troller for robots with known closed-loop states. The
above investigations designed the high-performance
controller for robot manipulators based on the assump-
tion of all the known or measured states, such as the
joint positions and velocities and armature currents of
motors. However, in the practical robotic manipulator
systems, the joint velocitieswere oftenmeasured by the
velocity sensors, which are expensive and usually con-
taminated by noise [13], further resulting in inaccurate
armature currents of motors.

To reduce the cost and noise disturbances, effec-
tive observers were designed to replace the actual joint
velocities measurement. Vo et al. [14] presented two
second-order sliding mode observers to estimate the
joint velocities and the system uncertainties, respec-
tively, and the observer-based output feedback track-
ing controller was then designed. Yen et al. [15] pre-
sented a reduced-order observer for the flexible-joint
EDRM to estimate the velocity signals, but the arma-
ture current had to be required for feedback. Liu et al.
[16] designed the neuro-adaptive observers that could
estimate all state variables of the flexible-joint robotic
systems; however, the motor dynamic model was not
included in robotic systems. Haouari et al. [17] com-
bined the advantages of coefficients diagram method
with the back-stepping procedure to control the EDRM
in the presence of uncertainties associated with robot
and motor dynamics, and an observer was designed
to achieve the exponential stability with the position
and velocity estimations. Regarding the position track-
ing control of EDRM based on the state observers, the
above investigations did the great work. Yet, the forces
of the end-effector have not been controlled. Since
the control tasks have become increasingly complex,
the traditional position-based tracking control methods
cannot meet the compliance requirement of the indus-
trial robots. Therefore, the force control for the end-
effector of EDRM should be involved so that the high-
accuracy positions and force tracking performances
could be achieved.

As a force control method, the impedance con-
trol has better robustness and adaptability in com-
parison with other force control methods [18–23].
Baigzadehnoe et al. [22] proposed an adaptive fuzzy

back-steppingposition/force control approach to ensure
that the signals of the closed-loop system were all uni-
formly ultimately bounded (UUB), where the fuzzy
system was used to estimate the unknown system
dynamic. Fateh [24] applied thevoltage control strategy
to provide the impedance control that was free from the
dynamics of the robotic manipulator. Yang et al. [25]
proposed an observer-based adaptive NN impedance
controller to achieve the position and force tracking
control for uncertain robotic manipulator, where a non-
linear velocity observer was designed to estimate the
joint velocities. To further improve the performance
of the controller, the motor dynamic model should be
considered, and Chien [26] proposed a back-stepping-
like procedure incorporating themodel reference adap-
tive control strategy to construct the impedance con-
troller. Moreover, the back-stepping technology has
been widely used to design the tracking controller
for the EDRM to guarantee the stability of the whole
closed-loop system, as well as for the flexible-link
robotic manipulators [26–32]. However, the force con-
trol and/or state observer-based control were usually
not involved in the above controllers design.

Considering the above drawbacks, to achieve the
high performances of position and force tracking con-
trol in the free space and the contact space, advanced
and intelligent control methods need to be developed
for the EDRM in the presence of the unknown joint
velocities and the armature currents. To achieve the
above benefits, this paper proposes an adaptive neu-
ral impedance control (ANIC) approach to control the
EDRM based on a neuro-adaptive observer (NAO),
where the force control and state observer-based con-
trol are considered simultaneously in the controller
design. Consequently, the main contributions are pre-
sented as follows:

(1) The joint velocities of the robotic manipula-
tor and the armature currents of the motors are
all assumed to be unknown and unmeasured,
and then, an NAO is presented to estimate the
unknown system states.

(2) Based on the impedance relationship, an NAO-
based ANIC method is proposed for controlling
the EDRM, where the adaptive NN is utilized to
estimate the system uncertainties so that the accu-
racy of the positions and force tracking is then
improved, and a robust term is also derived to
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compensate the approximation errors and distur-
bances.

(3) Considering the relationship between motor volt-
ages and control torques, the proposed NAO-
based ANIC scheme is designed by the back-
stepping technique, which can achieve position
and force tracking performances when the EDRM
contacts with environment.

According to the Lyapunov stability theory, the sta-
bility of the NAO-based ANIC system can be guaran-
teed. Finally, the simulation results show the feasibility
of the proposed observer-based control method.

The rest of this paper is organized as follows. In
Sect. 2, the structure of NN and the dynamic model
of the EDRM with motor dynamics are addressed. In
Sect. 3, the NAO and its stability are designed and ana-
lyzed, respectively. In Sect. 4, the NAO-based ANIC
scheme and its stability analysis are also derived based
on the observed states. Simulation results are presented
in Sect. 5 to validate the effectiveness of the pro-
posed intelligent-based observer and impedance con-
trol scheme, and the conclusions are given in Sect. 6.

2 Problem formulation and preliminaries

In this paper,� denotes the real number set,�n denotes
the n-dimensional vector space and �n×n denotes the
n × n real matrix space. The norm of vector x ∈ �n

is defined as ‖x‖ = √
xTx and the norm of matrix

A ∈ �n×n is defined as ‖A‖ = tr(ATA). Theminimum
and the maximum eigenvalue of matrix A are denoted
as λmin(A) and λmax(A), respectively. In×n denotes
the identity matrix and Om×n denotes the m × n zero
matrix. The standard sign function is denoted as sgn(·)
and the diagonal function is denoted as diag(·).

2.1 Description of neural network

In general, a neural network (NN) has the strong
approximation ability, which has been proved theoret-
ically that the NN can approximate any nonlinear con-
tinuous function over a compact set to arbitrary accu-
racy [5,7]. The structure of a three-layer NN can be
described as,

�(W, x) = WTφ(x) (1)

where x = [x1, . . . , xNn ]T ∈ �Nn denotes the
input vector, Nn denotes the input dimension, W =

[w1, . . . , wNo ] ∈ �Ns×No denotes the weight matrix
withwk ∈ �Ns , k = 1, . . . , No, Ns denotes the number
of neuron nodes and No denotes the output dimension,
φ(x) = [φ1(x), . . . , φNs (x)]T ∈ �Ns denotes the acti-
vation function, and the Gaussian function is usually
chosen as the hidden layer output function φ j (x),

φ j (x) = exp

[
− (x − c j )T(x − c j )

δ j
2

]
(2)

where j = 1, . . . , Ns , and c j denotes the center of the
j th neuron node, and δ j denotes the width of the j th
neuron.

In general, NN (1) is applied to approximate the
continuous smooth function f (x) : �x → R over a
compact set �x ∈ �Nn , if Ns is large enough, the ideal
bounded weights W ∗ exist, and we have,

f (x) = W ∗Tφ(x) + ε(x) (3)

where ε(x) is the reconstruction error. However, the
ideal weight matrixW ∗ is generally unknown, the esti-
mated weight matrix Ŵ is thus used to replace W ∗ to
approximate the function f (x), i.e.,

f̂ (x) = ŴTφ(x) (4)

where Ŵ can be adjusted by the learning law. Assumed
that there is a compact set �∗

W , which is defined as
�∗

W = {W ∗ ∈ �Ns×No : ‖W ∗‖ ≤ EW }, then the ideal
weight matrix W ∗ can be obtained as,

W ∗ = arg min
W ∗∈�∗

W

{sup | f (x) − ŴTφ(x) |}. (5)

Assumption 1 The reconstruction error is bounded
as,

‖ε(χ)‖ ≤ δε (6)

where δε is a positive constant.

In this paper, to achieve the satisfied observe and
control performances of the EDRM, the NNs will be
utilized as the compensators to eliminate the system
uncertainties both in the robotic systems and in the
motor dynamics.

2.2 Robotic manipulator dynamics and properties

Considering the relationship between the motor volt-
ages and the driven torques of a general n-degree of
freedom (DOF) EDRM, the dynamical models of the
manipulator and motor can be described as [3],
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M(q)q̈ + C(q, q̇)q̇ + G(q) + τ f (q̇) + τd

= KT Im − JT(q)Fe (7)

L İm + R(Im, q̇) + ue = u (8)

where q, q̇ and q̈ ∈ �n represent the joint position
vectors, velocity vectors and acceleration vectors of the
roboticmanipulator, respectively;M(q) ∈ �n×n repre-
sents the positive definite and symmetric inertiamatrix;
C(q, q̇) ∈ �n×n represents the effect of centrifugal
and Coriolis forces; G(q) ∈ �n represents the gravity
vector; τ f (q̇) ∈ �n is the friction effects; τd ∈ �n

denotes the bounded unknown disturbances including
unknown payload dynamics and unstructured dynam-
ics; Im ∈ �n denotes the motor armature current;
KT ∈ �n×n denotes the positive definite constant diag-
onal matrix which characterizes the electromechani-
cal conversion between the armature currents and joint
torques; J (q) ∈ �n×n represents the Jacobian matrix
that is to transfer mapping from the join space to the
task space; and Fe ∈ �n denotes the contact force at the
end-effector. L ∈ �n×n is the positive definite constant
diagonal matrix denoting the electrical inductances;
R(Im, q̇) ∈ �n represents the electrical resistances and
the motor back-electromotive forces; u ∈ �n is the
control input voltages; ue ∈ �n represents the additive
bounded voltage disturbances.

In general, due to the measuring errors, environ-
ment and payloads variations, it is difficult to obtain the
precise values of M(q), C(q, q̇) and G(q) in dynam-
ical model (7), which include the physical parameters
of manipulators such as links lengths, links masses,
moments of inertial and so on. Here, we assume that
the actual values M(q), C(q, q̇) and G(q) satisfy the
following relationships:⎧⎨
⎩

M(q) = M0(q) + 	M(q)

C(q, q̇) = C0(q, q̇) + 	C(q, q̇)

G(q) = G0(q) + 	G(q)

(9)

where M0(q), C0(q, q̇) and G0(q) are the nominal
parts and 	M(q),	C(q, q̇) and	G(q) are the uncer-
tain parts.

Then, the robotic dynamic model (7) can be repre-
sented as,

M0(q)q̈ + C0(q, q̇)q̇ + G0(q) + Y (q, q̇, Im) + τd

= KT Im − JT(q)Fe (10)

where Y (q, q̇, Im) can be expressed as follows,

Y (q, q̇, Im) = 	M(q)q̈ + 	C(q, q̇)q̇ + 	G(q) + τ f (q̇)

= 	M(q)
[
M−1(q) (KT Im

−C(q, q̇)q̇ − G(q) − τ f (q̇) − τd
)]

+ 	C(q, q̇)q̇ + 	G(q) + τ f (q̇) (11)

The following properties and assumptions are
required for the subsequent development.

Property 1 The inertia M0(q) is a positive definite and
symmetric matrix, which is uniformly bounded and sat-
isfied:

0 ≤ κm In×n ≤ M0(q) ≤ κM In×n, ∀q ∈ �n

where κm and κM are some positive constants.

Property 2 The matrix Ṁ0(q) − 2C0(q, q̇) is skew
symmetric, i.e.,

ζT (Ṁ0(q) − 2C0(q, q̇)
)
ζ = 0, ∀ζ ∈ �n

Property 3 The norm C0(q, q̇) is linear with respect
to q̇ such that

C0(q, ζ + ς) = C0(q, ζ ) + C0(q, ς)

C0(q, ζ )ς = C0(q, ς)ζ

‖C0(q, ζ )‖ ≤ Cb‖ζ‖, for q, ζ, ς ∈ �n

where Cb is a positive constant.

Assumption 2 The unknown disturbance term τd of
robotic model is bounded by ‖τd‖ ≤ τD, where τD is a
positive constant.

Assumption 3 The unknown disturbance term ue of
motor model is bounded by ‖ue‖ ≤ uE , where uE is a
positive constant.

Let X ∈ �m be the position vector of the end-
effector of EDRM in the task space. The relation
between the task space and the joint-space can be
described by the following forward kinematics,

X = P(q) (12)

where P(·) is the forward kinematic map, which is
generally a nonlinear transformation between the task
space and the joint-space. The velocities Ẋ of the end-
effector in the task space is related to the joint velocities
q̇ as,

Ẋ = J (q)q̇ (13)
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The correspondingCartesian space representationof
robotic dynamic model Eq. (10) can be then expressed
as,

M∗ Ẍ + C∗ Ẋ + G∗ + Ff + Fτd = J−TKT Im − Fe

(14)

where X , Ẋ and Ẍ are the position, velocity and accel-
eration vectors of the end-effector in Cartesian space,
respectively. Ẍ = J q̈ + J̇ q̇ , M∗ = J−TM0(q)J−1,

C∗ = J−T
(
C0(q, q̇) − M0(q)J−1 J̇

)
J−1, G∗ =

J−TG0(q), Ff = J−TY (q, q̇, Im), Fτd = J−Tτd, and
J is the Jacobian matrix that is assumed to be square
and invertible. It should be noted that the generalized
inverse matrix of J (q) can be utilized provided that the
Jacobian matrix J (q) is not a square matrix [23].

Lemma 1 According to Property 2, the matrix Ṁ∗ −
2C∗ is also skew-symmetric, i.e.,

ζT(Ṁ∗ − 2C∗)ζ = 0, ∀ζ ∈ �m

The proof of this lemma can be found in “Appendix A”.

Assumption 4 The disturbance Fτd is bounded by
‖Fτd‖ ≤ FD, where FD is a positive constant.

Generally, the inaccuracy of the system states infor-
mation and the uncertainties of the robotic and motor
dynamics could decrease the control performances of
the robotic systemdirectly. In this paper, the objective is
to design an observer to estimate the system states, and
to design an adaptive neural impedance control method
to achieve a certain position and force tracking perfor-
mance based on the observed states even though there
exists system uncertainties and external disturbances in
EDRM.

3 Neuro-adaptive observer design and stability
analysis

For the robotic system (8) and (10), assumed that q,
Fe and u can be measured directly, while the velocities
q̇ and the currents Im are unknown. In this section, a
neuro-adaptive observer (NAO) is designed to estimate
the unknown states of EDRM.

3.1 Neuro-adaptive observer design

Let the states be x1 = q, x2 = q̇ and x3 = Im , the
state-space model of EDRM described by Eqs. (8) and
(10) can be then represented as,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = M0

−1(x1) [−C0(x1, x2)x2 − G0(x1)
−Y (x1, x2, x3) − τd + KTx3 − JT(x1)Fe

]
ẋ3 = L−1 [u − R(x2, x3) − ue]
y = x1 (15)

According to Property 3, it can be concluded that,

C0(x1, x2)x2 − C0(x1, x̂2)x̂2

= C0(x1, x2)x̂2 + C0(x1, x2)x̃2 − C0(x1, x̂2)x̂2

= C0(x1, x̃2)(x2 + x̂2) (16)

Then, the system state equation (15) can be rewritten
as,⎧⎪⎪⎨
⎪⎪⎩
ẋ1 = x2
ẋ2 = x3 + fo1(x1, x̂2) + ho1(x1, x2, x3) + d1
ẋ3 = L−1u + ho2(x2, x3) + d2
y = x1

(17)

where fo1(x1, x̂2) represents the known part of the
robotic model; ho1(x1, x2, x3) and ho2(x2, x3) repre-
sent the unknown parts of the robotic model and the
motor model, respectively; d1 and d2 represent the
unknown disturbances of the robotic model and the
motor model, respectively, which can be described as,

fo1(x1, x̂2)

= M0
−1(x1)

[
− C0(x1, x̂2)x̂2 − G0(x1)

−JT(x1)Fe
]

(18)

ho1(x1, x2, x3)

= Y (x1, x2, x3) − C0(x1, x̃2)(x2 + x̂2)

+
(
M0

−1(x1)KT − I
)
x3 (19)

ho2(x2, x3) = −L−1R(x2, x3) (20)

d1 = −M0
−1(x1)τd (21)

d2 = −L−1ue (22)

According to Assumptions 2 and 3 , it can be con-
cluded that d1 and d2 are both bounded and satisfied,

‖d1‖ ≤ τD

λmin (M0(q))
(23)

‖d2‖ ≤ uE

‖L‖ (24)
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The standard form of the system state equation (17)
can be represented as,{

χ̇o = Aχo + Ho(χo) + Fo(x1, x̂2, u) + d
y = Cχo

(25)

where χo = (
xT1 , xT2 , xT3

)T
, Ho(χo) = [0, ho1(χo),

ho2(x2, x3)]T, Fo(x1, x̂2, u) = [
0, fo1(x1, x̂2),

L−1u
]T

, d = [0, d1, d2]T, and

A =
⎡
⎣0 I 0
0 0 I
0 0 0

⎤
⎦ , C = [I, 0, 0]

Considering the excellent approximation ability of
NN to nonlinear function, in this scheme, the unknown
function Ho(χo) is approximated by using NN, i.e.,

Ho(χo) = Wo
∗Tφo(χo) + εo(χo) (26)

We select the Gaussian function (2) as the activation
function of NN. Since the Gaussian function and the
ideal weights are bounded, we have ‖φo(χo)‖ ≤ βmax

and ‖Wo
∗‖ ≤ Wmax, where the parameters βmax and

Wmax are both positive constants.
Assumed that the robotic system is stable, that is, x1,

x2, x3 and u are all bounded, then we denote x̂1, x̂2 and
x̂3 as the observed values of x1, x2 and x3, respectively,
and we define the observed errors as x̃1 = x1 − x̂1,
x̃2 = x2 − x̂2 and x̃3 = x3 − x̂3. Then, the NAO, which
has the states (x̂T1 , x̂T2 , x̂T3 )T and the inputs (xT1 , uT)T,
can be designed as follows,{ ˙̂χo = Aχ̂o + ŴT

o φo(χ̂o) + Fo(x1, x̂2, u) + G(y − Cχ̂o)

ŷ = Cχ̂o

(27)

where χ̂o = (x̂T1 , x̂T2 , x̂T3 )T is the estimate value of χo;
G is the gain matrix of the observer. By choosing an
appropriate matrix G, the matrixA−GC can be a Hur-
witz matrix.

Substituting Eq. (27) into Eq. (25), the system error
dynamic equation of the observer can be obtained as,{ ˙̃χo = Aχ̃o + Ho(χo) − ŴT

o φo(χ̂o) − G(y − Cχ̂o) + d
ỹ = Cχ̃o

(28)

where χ̃o = χo − χ̂o, ỹ = y − ŷ.
Since

Ho(χo) − ŴT
o φo(χ̂o)

= W ∗T
o φo(χo) + εo(χo) − ŴT

o φo(χ̂o)

= W̃T
o φo(χ̂o) + W ∗T

o

[
φo(χo) − φo(χ̂o)

]+ εo(χo)

= W̃T
o φo(χ̂o) + ωo(χ̃o) + εo(χo) (29)

where W̃o = Wo
∗ − Ŵo is the estimated weight error,

and ωo(χ̃o) is the estimated error of the radial basis
vector, which is defined as,

ωo(χ̃o) = W ∗T
o φ̃o(χ̃o) = W ∗T

o

[
φo(χo) − φo(χ̂o)

]
(30)

Therefore, the system error dynamic equation of the
observer can be then represented as,{ ˙̃χo = A′χ̃o + W̃T

o φo(χ̂o) + ωo(χ̃o) + εo(χo) + d
ỹ = Cχ̃o

(31)

where A′ = A − GC is a Hurwitz matrix, therefore,
for a given positive definite matrix Qo, there exists a
positive definite matrix Po, which is satisfied,

PoA′ + A′TPo = −Qo (32)

Assumption 5 The approximation and reconstruction
errors of NN are bounded and satisfied,

‖ωo(χ̃o)‖ ≤ EWoδφo

where δφo is the positive constant.

According to Eqs. (23) and (24), it can be concluded
that the disturbance term d is bounded, that is, d sat-
isfies ‖d‖ ≤ δd , where δd is a positive constant. And
according to Assumptions 1 and 5, the approximation
error of NN is bounded. Then, the following boundary
condition will be satisfied as,

‖ωo(χ̃o) + εo(χo) + d‖ ≤ EWoδφo + δεo + δd � ρo
(33)

where ρo is a positive constant.

3.2 Stability analysis

Theorem 1 For the robotic dynamic models (10)
and (8), we assume that Assumptions 1–3 and 5 are all
satisfied, the NAO is designed as Eq. (27), the weights
adaptive law of NN is designed as,
˙̂Wo = kWo

[
φo(χ̂o)ỹ

TC + γ ‖Cχ̃o‖Ŵo

]
(34)

where kWo and γ are both the positive constants.
Then, the designed observer is stable. Moreover, the
observer error χ̃o and adaptive weights error W̃o are
both bounded.
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Proof Choosing a Lyapunov function candidate as,

Vo = 1

2
χ̃T
o Poχ̃o + 1

2kWo

tr{W̃T
o W̃o} (35)

Taking the derivative of the Vo with respect to time,
then substituting Eqs. (32) and (33), yields,

V̇o = 1

2
˙̃χT
o Poχ̃o + 1

2
χ̃T
o Po ˙̃χo + 1

kWo

tr{W̃T
o

˙̃Wo}

= 1

2
χ̃T
o (PoA′ + A′TPo)χ̃o

+
[
W̃T
o φo(χ̂o) + ωo(χ̃o) + εo(χo) + d

]T
Poχ̃o

+ 1

kWo

tr{W̃T
o

˙̃Wo}

= −1

2
χ̃T
o Qoχ̃o + χ̃T

o PoW̃
T
o φo(χ̂o)

+ [ωo(χ̃o) + εo(χo) + d
]T Poχ̃o

+ tr
{
W̃T
o φo(χ̂o)χ̃

T
o CTC + W̃T

o γ ‖Cχ̃o‖(W∗
o − W̃o)

}
≤ −1

2
λmin(Qo)‖χ̃o‖2 + βmax‖Po‖‖W̃o‖‖χ̃o‖

+ βmax‖C‖2‖W̃o‖‖χ̃o‖
+ γWmax‖C‖‖W̃o‖‖χ̃o‖
− γ ‖C‖‖W̃o‖2‖χ̃o‖ + ρo‖Po‖‖χ̃o‖

= −1

2
λmin(Qo)‖χ̃o‖2

+
(
βmax‖Po‖ + βmax‖C‖2 + γWmax‖C‖

)2
4γ ‖C‖ ‖χ̃o‖

− γ ‖C‖
(
‖W̃o‖

−βmax‖Po‖ + βmax‖C‖2 + γWmax‖C‖
2γ ‖C‖

)2
‖χ̃o‖

+ ρo‖Po‖‖χ̃o‖ (36)

Since

− γ ‖C‖
(

‖W̃o‖ − βmax‖Po‖ + βmax‖C‖2 + γWmax‖C‖
2γ ‖C‖

)2
‖χ̃o‖ < 0 (37)

Then, Eq. (36) is bounded as,

V̇o < −1

2
λmin(Qo)‖χ̃o‖2

+
(
βmax‖Po‖ + βmax‖C‖2 + γWmax‖C‖)2

4γ ‖C‖ ‖χ̃o‖
+ ρo‖Po‖‖χ̃o‖ (38)

We define,

� =
(
βmax‖Po‖ + βmax‖C‖2 + γWmax‖C‖)2

4γ ‖C‖ > 0

(39)

It can be concluded,

V̇o < −1

2
λmin(Qo)‖χ̃o‖2 + ρo‖Po‖‖χ̃o‖ + �‖χ̃o‖

(40)

As shown from the above equations, if ‖χ̃o‖ >

(2ρo‖Po‖ + 2�) /λmin(Qo) � ς , where ς is a posi-
tive constant, it can be concluded that V̇o < 0, that
is, by selecting appropriate parameter γ, ρo and matrix
A′ to make ς be an arbitrarily small value to guarantee
‖χ̃o‖ > ς . According to the Lyapunov stability theory,
the observer states error χ̃o and adaptive weight matrix
error W̃ are bounded. �

4 NAO-based ANIC design and stability analysis

In this section, a neuro-adaptive observer (NAO)-based
adaptive neural impedance control (ANIC) scheme
based on backstepping method for the EDRM is devel-
oped to achieve the position and force tracking. To
improve the tracking performances, the adaptive NN is
used to estimate the system uncertainties of the robotic
system, and a robust compensator term is derived to
compensate the disturbances and approximation errors
of the NN.

4.1 NAO-based ANIC scheme design

Define the vectors X and Ẋ as the position vector and
velocity vector in the task space, respectively, the posi-
tion tracking error E and velocity tracking Ė of the
end-effector can be then represented as,

E = Xr − X, Ė = Ẋr − Ẋ (41)

where Xr and Ẋr are the reference position vector and
velocity vector in the task space, respectively.

We define a filter tracking error as follows,

r = Ė + �E∗ (42)

where � = �T > 0 is a positive matrix, and E∗ =
[E∗

x , E
∗
y , E

∗
z ]T is defined as,
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Ei
∗ =

{
ei (free space)
e f i (contact space)

, i = x, y, z (43)

where e and e f denote the position error in the free
space and the force error in the contact space, respec-
tively.

Remark 1 The error E∗ is defined by considering the
difference in the control targets of the robot in the free
space and the contact space. In the free space, E∗ is the
position error e of the end-effector.While in the contact
space, E∗ is the combination of the position error e and
the contact force error e f of the end-effector.

Since the relationship between motor voltages and
driven torques are considered in the EDRM, the force
tracking impedance controller is then designed based
on backstepping method. We define the error signals
z1 = r and z2 = x3 − α, where α is a virtual con-
trol signal. The unknown system states x2 and x3 are
represented by the estimated values x̂2 = x2 − x̃2 and
x̂3 = x3 − x̃3, respectively, which can be obtained by
the designed NAO in Sect. 3, where x̃2 and x̃3 are the
estimated errors. The velocity vector Ẋ in the task space

is represented by the estimated velocity ˙̂X = Ẋ − ˙̃X ,
where ˙̃X is the estimated velocity errors in task space.
Then, the estimated filter tracking error can be repre-
sented as,

r̂ = ˙̂E + �E∗ (44)

where ˙̂E = Ẋr − ˙̂X . Then, the corresponding tracking
errors can be modified as ẑ1 = r̂ and ẑ2 = x̂3 − α,
and the system dynamic equations (14) and (8) can be
rewritten as,

M∗ ˙̂z1 = −C∗ ẑ1 − J−TKT(ẑ2 + α)

+Fτd + Fe + Hc(χ1) (45)

L ˙̂z2 = u − R(x2, x3) − L(α̇ + ˙̃z2) − ue (46)

where χ1 = (XT, ẊT, E∗T)T, and Hc(χ1) represents
the uncertainties term of the robotic system and can be
defined as,

Hc(χ1) = M∗(Ẍr + ¨̃X + �Ė∗)
+ C∗(Ẋr + ˙̃X + �E∗)+ G∗ + Ff (47)

In this paper, the unknown function Hc(χ1) is esti-
mated by using NN, i.e.,

Hc(χ1) = W ∗
1
T
φ1(χ1) + ε1(χ1) (48)

Similar as the NN in Sect. 3, the estimated error
ω1(χ̃1) can be represented as,

ω1(χ̃1) = W ∗T
1 φ̃1(χ̃1) = W1

∗T [φ1(χ1) − φ1(χ̂1)
]
(49)

where χ̃1 = χ1 − χ̂1 where χ̂1 is the estimated state of
χ1, and W̃1 = W ∗

1 − Ŵ1 is the weight estimated error.

Step 1 Select the virtual control signal α as the ideal
Im ,

α = K−1
T JT

[
Kc1 ẑ1 + ŴT

1 φ1(χ̂1) + Fe + uc1
]

(50)

where Kc1 is a positive matrix, and uc1 is a robust term,
which will be defined later.

Then, substituting Eq. (50) into Eq. (45), yields,

M∗ ˙̂z1 = −C∗ ẑ1 − J−TKT ẑ2 + Fτd + Hc(χ1)

−
[
Kc1 ẑ1 + ŴT

1 φ1(χ̂1) + uc1
]

(51)

Then, substituting Eqs. (48) and (49) into Eq. (51),
we have,

M∗ ˙̂z1 = −C∗ ẑ1 − Kc1 ẑ1 − J−TKT ẑ2 + W̃T
1 φ1(χ̂1)

− [uc1 − ω1(χ̃1) − ε1(χ1) − Fτd

]
(52)

Similar as Assumptions 1 and 5, we can obtain,

‖ω1(χ̃1)‖ ≤ EW1δφ1 , ‖ε1(χ1)‖ ≤ δε1 (53)

where δφ1 and δε1 are both the positive constants. Then,
according to Assumption 4 the following boundary
condition will be satisfied as,

‖ω1(χ̃1) + ε1(χ1) + Fτd‖ ≤ EW1δφ1 + δε1

+ FD � ρc1 (54)

where ρc1 is a positive constant. The robust compen-
sation term uc1, which is used to compensate the dis-
turbances and approximation errors, can be designed
as,

uc1 =
{

ρc1
ẑ1

‖ẑ1‖ , if ‖ẑ1‖ �= 0

0, if ‖ẑ1‖ = 0
(55)

The NN adaptive law is designed as,

˙̂W1 = kW1

[
φ1(χ̂1)ẑ1 − δW1 Ŵ1

]
(56)

where kW1 and δW1 are both the positive constants.
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Choose a Lyapunov function candidate as,

V1 = 1

2
ẑT1 K

−1
T M∗ ẑ1 + 1

2kW1

tr{W̃T
1 W̃1} (57)

Taking the derivative of the V1 with respect to time
and substituting Eq. (57), yields,

V̇1 = 1

2
ẑT1 K

−1
T Ṁ∗ ẑ1 + ẑT1 K

−1
T M∗ ˙̂z1 + 1

kW1

tr{W̃T
1

˙̃W1}

= 1

2
ẑT1 K

−1
T Ṁ∗ ẑ1

+ ẑT1 K
−1
T

{
−C∗ ẑ1 − Kc1 ẑ1 − J−TKT ẑ2

+W̃T
1 φ1(χ̂1) − [uc1 − ω1(χ̃1) − ε1(χ1) − Fτd

]}
+ 1

kW1

tr{W̃T
1

˙̃W1}

= ẑT1 K
−1
T

{
− Kc1 ẑ1 − J−TKT ẑ2 + W̃T

1 φ1(χ̂1)

−
[
uc1 − ω1(χ̃1) − ε1(χ1) − Fτd

]}
+ 1

kW1

tr{W̃T
1

˙̃W1} (58)

Substituting Eqs. (54)–(56) into Eq. (58), and consid-

ering the fact ˙̃W1 = − ˙̂W1, yields,

V̇1 ≤ −ẑT1 K
−1
T Kc1 ẑ1 − ẑT1 J

−T ẑ2 + δW1 tr{W̃T
1 Ŵ1}

(59)

Step 2 Now, we consider the motor dynamic equa-
tion (46), choose the ideal control input as,

ued = R(x2, x3) + L(α̇ + ˙̃z2) (60)

and take the first derivative of Eq. (50), yields,

α̇ = ∂α

∂ J
J̇ + ∂α

∂ ẑ1
˙̂z1 + ∂α

∂Ŵ1

˙̂W1 + ∂α

∂φ1
φ̇1 + ∂α

∂Fe
Ḟe

= K−1
T J̇T

(
Kc1 ẑ1 + ŴT

1 φ1 + Fe + uc1
)

+ ϕα

(61)

where

ϕα = K−1
T JT

(
Kc1

˙̂z1 + ˙̂WT

1φ1 + ŴT
1 φ̇1 + Ḟe

)
(62)

In this scheme, another NN is used to approximate
the ideal control input ued as,

ued = W ∗T
2 φ2(χ2) + ε2(χ2) (63)

where χ2 = (xT1 , xT2 , XT, ẊT, E∗T, ϕT
α )T.

Remark 2 In general, R(x2, x3) in Eq. (60) includes
the motor-related parameters like the back-EMF con-
stants. These parameters are difficult to be measured
precisely [3]. Also, the term α̇ in Eq. (60) is relatively
complex, and it is hard to implement controller design
directly. Therefore, the neural network is also used to
approximate the control input ued in this step.

Since the joint velocity q̇ and the armature current
Im are both estimated by theNAO,we use the estimated

input χ̂2 = (x̂T1 , x̂T2 , XT, ˆ̇XT, E∗T, ϕT
α )T to replace the

χ2. Then, the control input can be designed as,

u = J−T ẑ1 − Kc2 ẑ2 + ŴT
2 φ2(χ̂2) + uc2 (64)

where uc2 is the robust compensation term.
Substitute Eq. (64) into Eq. (46), yields,

L ˙̂z2 = J−T ẑ1 − Kc2 ẑ2 + ŴT
2 φ2(χ̂2) + uc2 − ued − ue

(65)

Similar as Eq. (29), one can obtain,

ued − ŴT
2 φ2(χ̂2) = W̃T

2 φ2(χ̂2) + ω2(χ̃2) + ε2(χ2)

(66)

where W̃2 = W2
∗ − Ŵ2, χ̃2 = χ∗

2 − χ̂2, ω2(χ̃2) =
W ∗T

2 [φ2(χ2)−φ2(χ̂2)]. And similar as Assumptions 1
and 5, we can assume,

‖ω2(χ̃2)‖ ≤ EW2δφ2 , ‖ε2(χ2)‖ ≤ δW2 (67)

where δφ2 and δW2 are both the positive constants. Sub-
stitute Eq. (66) into Eq. (65), yields,

L ˙̂z2 = J−T ẑ1 − Kc2 ẑ2 + W̃T
2 φ2(χ̂2)

+ [uc2 − ω2(χ̃2) − ε2(χ2) − ue
]

(68)

Since the approximation error of NN is bounded,
and according to Assumption 3, it can be concluded
that the following boundary condition is satisfied as,

‖ω2(χ̃2) + ε2(χ2) + ue‖ ≤ EW2δφ2 + δφ2 + uE � ρc2
(69)

where ρc2 is a positive constant. The robust compensa-
tion term is derived as,

uc2 =
{

−ρc2
ẑ2

‖ẑ2‖ , if ‖ẑ2‖ �= 0

0, if ‖ẑ2‖ = 0
(70)

and the NN adaptive law is designed as,

˙̂W2 = kW2

[
φ2(χ̂2)ẑ2 − δW2 Ŵ2

]
(71)
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where kW2 and δW2 are all the positive constants.
Choosing a Lyapunov function candidate as,

Vc2 = 1

2
ẑT2 Lẑ2 + 1

2kW2

tr{W̃T
2 W̃2} (72)

Taking the derivative of the Vc2 with respect to time
and substituting Eq. (68), yields,

V̇c2 = ẑT2 L
˙̂z2 + 1

kW2

tr{W̃T
2

˙̃W2}

= ẑT2

{
JT

−1
ẑ1 − Kc2 ẑ2 + W̃T

2 φ2(χ̂2)

+
[
uc2 −

(
ω2(χ̃2) − ε2(χ2)

)
− ue

]}
+ 1

kW2

tr{W̃T
2

˙̃W2} (73)

According to the modeling error equation (69) and
the robust compensation term (70), we can obtain

ẑT2

[
uc2 −

(
ωc2(χ̃2) − ε2(χ2)

)
− ue

]
≤ 0 (74)

Then, considering theNN adaptive laws (71) and the

fact ˙̃W2 = − ˙̂W2, we have,

ẑT2 W̃
T
2 φ2(χ̂2) + 1

kW2

tr{W̃T
2

˙̃W2} = δW2 tr{W̃T
2 Ŵ2} (75)

Substituting Eqs. (74) and (75) into Eq. (73), yields,

V̇c2 ≤ ẑT2 J
−T ẑ1 − ẑT2 Kc2 ẑ2 + δW2 tr{W̃T

2 Ŵ2}. (76)

4.2 Stability analysis

Theorem 2 Considering the robot dynamic Eq. (14)
and motor dynamic Eq. (8) of EDRM, supposed that
Assumptions 1–5 are all satisfied, theNAO-basedANIC
law is designed as Eqs. (64) and (50), where the robust
compensation terms are designed as Eqs. (70) and (55),
and the NN adaptive laws are designed as Eqs. (71)
and (56). Then, the stability of the observer-based
closed-loop control system can be guaranteed. Fur-
thermore, the error signals ẑ1, ẑ2 and adaptive param-
eter errors W̃i , i = 1, 2 are all uniformly ultimately
bounded(UUB). It means that the position error e in
the free space, the force error e f in the contact space

and the velocity error ˙̂E are all bounded and can be
made as small as possible.

Proof Choosing a Lyapunov function as,

Vc = Vc1 + Vc2 = 1

2
ẑT1M

∗ ẑ1 + 1

2
ẑT2 Lẑ2

+
2∑

i=1

1

2kWi

tr{W̃T
i W̃i } (77)

Taking the derivative of the Vc with respect to time and
substituting Eqs. (59) and (76), yields,

V̇c = −ẑT1 K
−1
T Kc1 ẑ1 − ẑT1 J

−T ẑ2 + ẑT2 J
−T ẑ1

− ẑT2 Kc2 ẑ2 +
2∑

i=1

δWi tr{W̃T
i

˙̃Wi }

= −ẑT1 K
−1
T Kc1 ẑ1 − ẑT2 Kc2 ẑ2 +

2∑
i=1

δWi tr{W̃T
i Ŵi }

(78)

Since

2∑
i=1

δWi tr{W̃T
i Ŵi } ≤ −

2∑
i=1

δWi

2
tr{W̃T

i W̃i }

+
2∑

i=1

δWi

2
tr{W ∗T

i W ∗
i } (79)

Then, Eq. (78) is bounded as,

V̇c ≤ −ẑT1 K
−1
T Kc1 ẑ1 − ẑT2 Kc2 ẑ2 −

2∑
i=1

δWi

2
tr{W̃T

i W̃i }

+
2∑

i=1

δWi

2
tr{W ∗T

i W ∗
i } (80)

Define

πc = λmin(Qc)

λmax(Pc)
(81)

where

Qc =
⎡
⎣2K−1

T Kc1 0 0
0 2Kc2 0
0 0 diag{δW1 , δW2}

⎤
⎦ ,

Pc =
⎡
⎢⎣
M∗ 0 0
0 L 0
0 0 diag{ 1

kW1
, 1
kW2

}

⎤
⎥⎦

and

2∑
i=1

δWi

2
tr{Wi

∗TWi
∗} ≤ εc (82)
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where εc is a positive constant. Then, according to
Eq. (72), it can be concluded that V̇c is bounded as,

V̇c ≤ −πcVc + εc (83)

Based on Lyapunov stability theorem, the stability of
the whole closed-loop system can be achieved. More-
over, solving the inequality (83) yields,

0 ≤ Vc(t) ≤
[
Vc(t0) − εc

πc

]
e−πct + εc

πc
(84)

It means that the error signals ẑ1,ẑ2 and the NNweights
errors W̃1,W̃2 are all UUB. Furthermore, for arbitrary
r̂(t0), we can obtain the following equation as t > t0,

‖r̂(t)‖ = ‖ẑ1(t)‖

≤
√
Vc(t0) − εc/πc

λmin(Pc)
‖ẑ1(t0)‖2e−πct + 2εc

Pcπc
(85)

From Eq. (85), the first term within the square root will
converge to zero, which means that the filter tracking
error ‖r̂(t)‖ ≤ √

2εc/(Pcπc) as t → +∞. Therefore,
it can be concluded that the filter tracking error, which
consists of the position error e in the free space, the
force error e f in the contact space and the velocity

error ˙̂E , can bemade as small as possible by appropriate
choice of the design parameters. �

Remark 3 Due to Ė = Ẋr − Ẋ and ˙̂E = Ẋr − ˙̂X , the
actual velocity error can be obtained as,

Ė = ˙̂E − ˙̃X (86)

Since the observer errors x̃2 and x̃3 are both bounded
and are proven in Sect. 3, which means that the

observed velocity error ˙̃X in the task space is also
bounded, the actual velocity error Ė and the armature
current Im are bounded.

Remark 4 In this paper, the NAO is designed to obtain
the unknown joint velocities and armature currents.
Then, considering the relationship betweenmotor volt-
ages and control torques, the ANIC scheme is designed
by the backstepping technique to control the EDRM
based on the observed velocities and the armature cur-
rents. In the designed controller, the neural networks are
used to approximate the unknown functions and uncer-
tainties, and the robust terms are designed to eliminate
the effect of the approximation errors of neural network
and the external disturbances. In this way, the stability
of the whole system is guaranteed and the signals in the

closed-loop system are all bounded, which means that
the position and force tracking can be achieved when
the EDRM contacts with environment.

Remark 5 The observer parameters G, γ, ρo and con-
troller parameters �, Kc1, Kc2, ρc1, ρc2 are sensitive
to the convergence rate of the observed errors and con-
troller errors. In general, the increase the above param-
eters will result in a faster convergence speed. How-
ever, it is not recommended to use very large design
parameters, because this may lead to a stronger noise
effect. Moreover, too large or too small values of the
gain parameters γ , ρc1, ρc2 will lead to the overshoot.
Therefore, the parameters should be adjusted carefully
for achieving suitable performances of the observer and
controller.

5 Simulation examples

To verify the performances of the theoretical results, in
this section, the proposed NAO-based ANIC scheme
is utilized to control the electrically driven 2-DOF
robotic system. The matrices of robotic system (7) are
described as,

M(q)

=
[

(m1 + m2)l12 + m2l22 + 2m2l1l2c2 m2(l22 + l1l2c2)
m2(l22 + l1l2c2) m2l22

]

C(q, q̇) =
[

−2m2l1l2s2q̇2 m2l1l2s2q̇2
m2l1l2s2q̇2 0

]

G(q) =
[

(m1 + m2)l1gc1 + m2l2gc12
m2l2gc12

]
,

and the Jacobian matrix is given as,

J (q) =
[−l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]
where l1 and l2 denote the length of link 1 and link 2,
respectively; m1 and m2 denote the mass of link 1 and
link 2, respectively; si represents sin(qi ), ci represents
cos(qi ), si j and ci j represent sin(qi +q j ) and cos(qi +
q j ) for i, j = 1, 2, respectively; g is the acceleration
of gravity.

The electrical inductance vector L = diag(L1, L2),
and R(Im, q̇) in motor dynamic model (8) is given as,

R(Im, q̇) = RIm + KBq̇

where the positive definite diagonalmatrices R ∈ �n×n

and KB ∈ �n×n are the electrical resistance and the
motor back-electromotive forces, respectively.
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Table 1 The structures and parameters of neural networks

�(Wi , χi ) 0 1 2

Structure 6-20-6 6-20-2 12-20-2

Center c j [−5, 5]20 [−5, 5]20 [−5, 5]20
Width δ j 5 5 5

Learning law
kWi

0.2 0.2 0.15

Input χ̂i (xT1 , x̂T2 , x̂T3 ) (XT,
˙̂XT, E∗T) (xT1 , x̂T2 , XT,

˙̂XT,

E∗T, ϕT
α )

Initial weights
Ŵi (0)

0 0 0

Table 2 Simulation parameters of the robotic system

Parameter Unit Actual values Nominal values

l1 m 1 0.9

l2 m 1 1.1

m2 kg 2 1.6

m2 kg 3 3.3

g m/s2 9.8 9.8

KT1 = KT2 Nm/A 10 10

R1 = R2 � 4 ∗
KB1 = KB2 Nm s/rad 4 ∗
L1 = L2 mH 2.5 ∗
∗Unknown value

5.1 Design procedure

To summarize the theoretical analysis in Sects. 3 and 4,
the step-by-step procedures of the NAO-based ANIC
scheme for robotic manipulator can be outlined as fol-
lows:

Step 1 Select the environmental stiffness matrix Ke =
2000I2×2 and the environmental position xe = 1.3m.

Step 2 Select the observer gain matrix G = [120I2×2,

120I2×2, 120I2×2]T to make A − GC to be a Hurwitz
matrix and select the parameter γ = 0.05.

Step 3 Choose � = 10I2×2 in the free space and
� = diag(0.1, 10) in the contact space in Eq. (42),
respectively. It should be noted that only x direction is
constrained.

Step 4 Select controller gains Kc1 = 500I2×2 in the
virtual control vector α (50) and Kc2 = 15I2×2 in the
control input (64), and the robust term parameters are
set to be ρc1 = 20 and ρc2 = 20 in Eqs. (55) and (70),
respectively.

Step 5 Construct the NNs, the detailed structure and
parameters of NNs in observer and controller are
shown in Table 1.

Then, the observer and controller can be obtained
from Theorems 1 and 2, respectively.

5.2 Simulation results

The parameters of the robotic system are shown in
Table 2, where the nominal values are used to facilitate
the nominal controller and the actual values are used to
introduce the uncertainties to test the robustness of the
proposed observer and controller.

The initial conditions are chosen as q1(0) =
π/2rad, q2(0) = π/3rad and q̇1(0) = q̇2(0) =
0rad/s. The observed initial conditions are chosen as
˙̂q1(0) = ˙̂q2(0) = 0 rad/s. The desired position

Fig. 1 Position tracking for
Case 1
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Fig. 2 Position tracking
errors for Case 1
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Fig. 3 Velocity tracking
errors for Case 1
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Fig. 4 Observed armature
current errors for Case 1
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and velocity of the end-effector are set as Xr (t) =
1.6[sin(0.4t − π/6), sin(0.4t + π/3)]Tm and Ẋr (t) =
0.64[cos(0.4t − π/6), cos(0.4t + π/3)]Tm/s, respec-
tively. To show the robustness of the proposed scheme,
the friction term is τ f = [3q̇1 + 0.8sign(3q̇1), q̇2 +
1.1sign(2q̇2)]TN/m, the torque and voltage distur-
bances are τd = [−2 cos(2t), 2 sin(t)]T N/m and
ue = [−0.7 cos(3t), 0.5 sin(2t)]TV, respectively. In
order to show the performances for tracking the con-
stant force and the time-vary force, two simulation tests

are conducted, where the constant force is set to be
Fd = [50, 0]TN in Case 1 and the time-varying force
is set to be Fd = [50 + 20 sin(2t), 0]TN in Case 2. To
show the system robustness, additional simulation tests
with complex positions and larger disturbance are also
conducted in Case 3. The total simulation time is 50 s,
and the sample time is 0.001s.

Case 1 Assumed that the desired constant force is
Fd = [50, 0]TN and is exerted on the end-effector
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Fig. 5 Force tracking and
error for Case 1
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Fig. 6 Position tracking of end-effector

as x ≥ xe = 1.3 in x direction. Figure 1a, b shows
the desired, observed and actual positions of the end-
effector in x and y directions of the Cartesian space,
respectively. Figure 2a, b shows the observed and actual
position errors between the desired and actual positions
in x and y directions of the Cartesian space, respec-
tively. Figure 3a, b shows the observed and actual veloc-
ity errors in x and y directions of the Cartesian space,
respectively. Figure 4a, b shows the observed current
errors of joint 1 and joint 2, respectively. Figure 5a
shows the force exerting on the end-effector in x direc-
tion, and Fig. 5b shows the force error in the x direction.
Figure 6 shows the position tracking of the end-effector,
and Fig. 7 shows theweights updating process of neural
networks.

Case 2 The desired time-varying force Fd = [50 +
20 sin(2t), 0]TN is also exerted on the end-effector of

Fig. 7 Weights of neural networks

EDRMto demonstrate the performance of the proposed
NAO-based ANIC scheme. Similar as Case 1, Figs. 8,
9, 10, 11, 12, 13 and 14 show the simulation results,
where the representations of each figure are same as
Figs. 1, 2, 3, 4, 5, 6 and 7.

From the results in Case 1 and Case 2, one can see
that the EDRMcanworkwell both in the free space and
in the contact space. In the free space, the tracking per-
formances of the position (Figs. 1, 8) of themanipulator
can be achieved both in x and y directions. In the con-
tact space, the force tracking performances (Figs. 5, 12)
of the manipulator can be achieved in x direction, and
the position tracking performances can still be ensured
in y direction. And from the position errors (Figs. 2,
9), velocity errors (Figs. 3, 10) and armature current
errors (Figs. 4, 11), it is obvious that the proposedNAO-
based ANIC scheme can achieve the good convergence
speeds with small steady-state errors. In addition, from
Figs. 7 and 14, it can be seen that all the weights of neu-
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Fig. 8 Position tracking for
Case 2
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Fig. 9 Position tracking
errors for Case 2
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Fig. 10 Velocity tracking
errors for Case 2
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ral networks in observer and controller are bounded and
can converge to the optimal values quickly.

Case 3 To further verify the performances of the pro-
posed method, more complex desired position and
velocity curves are considered as Xr (t) = [Xr1, Xr2]Tm
and Ẋr (t) = [Ẋr1, Ẋr2]Tm/s, where Xr1 and Xr2 are
described as Eq. (87), and Ẋr1 and Ẋr2 are described as
Eq. (88). The initial conditions are chosen as q1(0) =

π/6rad, q2(0) = 2π/7rad, q̇1(0) = q̇2(0) = 0rad/s
and ˙̂q1(0) = ˙̂q2(0) = 0 rad/s. Also, the desired force
is set to be time-varying Fd = [50 + 20 sin(2t), 0]TN
that is same as Case 2. Here, compared with Case 1
and Case2, the larger torque and voltage disturbances
are set as τd = [−5 cos(2t), 5 sin(t)]TN/m and ue =
[−2 cos(3t), sin(2t)]TV, respectively. Then, the larger
robust gains are correspondingly chosen as ρc1 = 30
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Fig. 11 Observed armature
current errors for Case 2
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Fig. 12 Force tracking and
error for Case 2
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Fig. 13 Position tracking of end-effector

and ρc2 = 30. Figures 15, 16, 17, 18, 19, 20 and 21
show the simulation results, where the representations

Fig. 14 Weights of neural networks

of each figure are also same as Figs. 1, 2, 3, 4, 5, 6
and 7.
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Fig. 15 Position tracking
for Case 3
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Fig. 16 Position tracking
errors for Case 3

0 10 20 30 40 50
-0.1

0

0.1

0.2

0.3

Position error in the x direction

0 10 20 30 40 50
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Position error in the y direction(a) (b)

Fig. 17 Velocity tracking
errors for Case 3
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{
Xr1 = √

2 cos (t/(2π)) sin (t/(2π))
/
sin (t/(2π))

(
(sin (t/(2π)))2 + 2

)
Xr2 = √

2 cos (t/(2π)) /
(
(sin (t/(2π)))2 + 1

) (87)⎧⎨
⎩
Ẋr1 = √

2 sin (t/2π)
(
sin (t/2π)2 − 3

)/(
2π
(
sin (t/2π)2 + 1

)2)
Ẋr2 = √

2 (3 cos (t/ π) − 1)
/(

4π
(
sin (t/2π)2 + 1

)2) (88)
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Fig. 18 Observed armature
current errors for Case 3
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Fig. 19 Force tracking and
error for Case 3
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Fig. 20 Position tracking of end-effector

According to the simulation results of Figs. 15 and
20, we can see that the proposed NAO-based ANIC
scheme can achieve the stability of the systemunder the
complex desired positions and velocities and large dis-
turbances. From Figs. 16, 17, 18 and 19, it can be con-
cluded that the proposed method is still effective and

Fig. 21 Weights of neural networks

the stability of the whole system can be achieved with
small steady-state errors even if the large disturbances
and complexdesired positions are both occurred.More-
over, from Fig. 21, it can be seen that the weights of the
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neural networks are bounded and can be also converged
to the optimal values in finite time.

From the above results and analysis, the
proposed NAO-based ANIC scheme can efficiently
achieve the satisfied performances of force tracking of
end-effector and the position tracking of the EDRM
system without velocities and armature currents mea-
surement.

6 Conclusions

This paper presents an adaptive neural impedance
control (ANIC) method based on a neuro-adaptive
observer (NAO) for the EDRM, where the joint veloc-
ities of robotic manipulator and the currents of the
driven motors are assumed to be unknown and unmea-
sured. First, an NAO is derived to observe the unknown
states of the robotic system, and the stability of NAO
is also guaranteed and proven by using Lyapunov sta-
bility theory. Second, based on the observed velocities
and currents, an ANIC scheme is proposed based on
the back-stepping technique, where the adaptive NNs
are utilized to approximate the unknown functions and
uncertainties of theEDRMso that the tracking accuracy
of the positions and force is improved, and the robust
terms are utilized to compensate and the approximation
errors ofNNs and the external disturbances. Finally, the
simulation tests on a two-link EDRM are conducted
to demonstrate the performances of the proposed
observer-based intelligent compliance control scheme.

As for future work, the proposed method will be
proven experimentally and applied to the real robotic
systems and other electromechanical systems. Further-
more, to enhance the intelligence of the controlmethod,
visual feedback will also be focused to facilitate the
compliance control of robotic systems.
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Appendix A

The proof of Lemma 1.
Taking the derivative of M∗ with respect to time, we

can obtain,

Ṁ∗ = J−T Ṁ0(q)J−1 − 2J−TM0(q)J−1 J̇ J−1. (89)

ConsideringC∗ = J−T
(
C0(q, q̇)−M0(q)J−1 J̇

)
J−1

and substituting Eq. (89) and C∗ into Eq. (12), yields

ζT(Ṁ∗ − 2C∗)ζ

= ζT
[
J−T Ṁ0(q)J−1

−2J−TM0(q)J−1 J̇ J−1 − 2C∗] ζ

= ζT
[
J−T Ṁ0(q)J−1 − 2J−TM0(q)J−1 J̇ J−1

−2JT
−1
(
C0(q, q̇) − M0(q)J−1 J̇

)
J−1
]
ζ

= ζT
[
J−T Ṁ0(q)J−1 − 2J−TC0(q, q̇)J−1

]
ζ

= ζT
[
J−T (Ṁ0(q) − 2C0(q, q̇)

)
J−1
]
ζ

= 0. (90)

It means that the matrix Ṁ∗ − 2C∗ is skew symmetric.
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